
Speeding Up Cloth Simulation

by

Eddy Boxerman

B.Eng., University of McGill, 1994

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia

November 2003

c© Eddy Boxerman, 2003



Abstract

Simulating the motion of cloth is an important component in virtual character

animation. Believable animations are now expected in feature films. Games and

virtual reality are next, but the computational costs are still high. In this thesis we

present a number of methods which reduce these costs, without losing accuracy or

generality.

To this end, we introduce a novel adaptive implicit-explicit time integration

scheme, which takes advantage of simulation parameters — locally in both space and

time — to improve the efficiency of the computation. Building upon this technique,

we present a decomposition method which attempts to decouple the cloth mesh into

multiple components that can be solved separately and in parallel. These techniques

are introduced in the context of particle-system models, and include discussions on

a variety of modelling and simulation issues.

We also significantly improve the efficiency of the modified preconditioned

conjugate gradient technique often used in cloth simulation for implicit integration

schemes. We present improvements in the form of a preconditioner for the con-

strained problem and a better initial guess.

ii



Contents

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

Acknowledgements ix

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Implementation and Experiments . . . . . . . . . . . . . . . . . . . . 3

2 Previous Work 4

3 Cloth Modelling 8

3.1 Continuum vs. Particle-System Models . . . . . . . . . . . . . . . . . 9

3.1.1 Continuum Model . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 Particle-System Model . . . . . . . . . . . . . . . . . . . . . . 10

3.1.3 Relationship between Continuum and Particle-System Models 11

3.2 The Cloth Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iii



3.3 Damping in Cloth Particle Models . . . . . . . . . . . . . . . . . . . 19

3.4 External Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Aerodynamic Forces . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.2 Collisions and Friction . . . . . . . . . . . . . . . . . . . . . . 22

4 Time Integration 25

4.1 Explicit Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Forward Euler . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.2 Forward-Backward Euler . . . . . . . . . . . . . . . . . . . . 28

4.1.3 Stability Analysis of FB Euler . . . . . . . . . . . . . . . . . 29

4.1.4 Damping Analysis . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Implicit Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Implicit Methods in Cloth Simulation . . . . . . . . . . . . . 36

4.2.3 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.4 Damping Analysis . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 IMEX Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 IMEX Methods in Cloth Simulation . . . . . . . . . . . . . . 44

4.3.3 Higher Order IMEX Methods . . . . . . . . . . . . . . . . . . 46

4.4 Adaptive IMEX Integration . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . 47

4.4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.3 AIMEX Experiments . . . . . . . . . . . . . . . . . . . . . . . 49

iv



5 The Modified Conjugate Gradient Method in Cloth Simulation 57

5.1 The Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . 58

5.2 MPCG (with corrections) . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Improved Preconditioner for MPCG . . . . . . . . . . . . . . . . . . 63

5.3.1 Constrained Preconditioner Experiments . . . . . . . . . . . . 64

6 Decomposing Cloth 72

6.1 Decomposition Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.1 Mechanism 1: Sparsity . . . . . . . . . . . . . . . . . . . . . . 74

6.1.2 Mechanism 2: Constraints . . . . . . . . . . . . . . . . . . . . 75

6.2 How to Decompose Cloth . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.1 Decomposition Algorithm . . . . . . . . . . . . . . . . . . . . 77

6.3 MPCG Solution of Decomposed Components . . . . . . . . . . . . . 79

6.4 Decomposing Cloth Experiments . . . . . . . . . . . . . . . . . . . . 81

6.4.1 Experiment: Cost Overhead of our Decomposing Solver . . . 82

6.4.2 Experiment: Performance Improvements of our Decomposing

Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4.3 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . 86

7 Conclusion 87

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Bibliography 90

v



List of Tables

4.1 Performance statistics: AIMEX vs. Implicit schemes . . . . . . . . . 56

vi



List of Figures

1 Cloth draping over a sphere . . . . . . . . . . . . . . . . . . . . . . . x

3.1 A section of a simple particle-system model for cloth . . . . . . . . . 11

3.2 A member undergoing axial deformation . . . . . . . . . . . . . . . . 12

3.3 Zoomed in on the corresponding 1D particle system . . . . . . . . . 13

3.4 Choi and Ko model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Cloth suspended at two corners . . . . . . . . . . . . . . . . . . . . . 33

4.2 A single mass-spring system . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Sparsity structure for implicit scheme . . . . . . . . . . . . . . . . . 37

4.4 System energy plots — no damping . . . . . . . . . . . . . . . . . . . 41

4.5 System energy plots — non-projected damping . . . . . . . . . . . . 42

4.6 System energy plots — projected damping . . . . . . . . . . . . . . . 42

4.7 Sparsity structure for IMEX scheme . . . . . . . . . . . . . . . . . . 45

4.8 Wireframe snapshot for large time step . . . . . . . . . . . . . . . . . 51

4.9 Wireframe snapshot for modest time step . . . . . . . . . . . . . . . 51

4.10 Wireframe snapshot for small time step . . . . . . . . . . . . . . . . 52

4.11 Sparsity structure for AIMEX scheme . . . . . . . . . . . . . . . . . 53

4.12 Difference between AIMEX and implicit schemes — worst case . . . 55

4.13 Difference between AIMEX and implicit schemes — average case . . 55

vii



5.1 Preconditioned conjugate gradient algorithm . . . . . . . . . . . . . 59

5.2 Corrected modified preconditioned conjugate gradient algorithm . . 62

5.3 CG iteration count vs. n — Unconstrained case . . . . . . . . . . . . 67

5.4 CG iteration count ratio vs. n — Unconstrained case . . . . . . . . . 67

5.5 CG iteration count vs. κ — Unconstrained case . . . . . . . . . . . . 68

5.6 CG iteration count ratio vs. κ — Unconstrained case . . . . . . . . . 68

5.7 CG iteration count vs. n — Constrained case . . . . . . . . . . . . . 69

5.8 CG iteration count ratio vs. n — Constrained case . . . . . . . . . . 70

5.9 CG iteration count vs. κ — Constrained case . . . . . . . . . . . . . 70

5.10 CG iteration count ratio vs. κ — Constrained case . . . . . . . . . . 71

6.1 Tablecloth draped over a square table . . . . . . . . . . . . . . . . . 73

6.2 Reordered, block-diagonal matrix . . . . . . . . . . . . . . . . . . . . 74

6.3 A symmetric matrix A and its labeled graph . . . . . . . . . . . . . 76

6.4 Decomposed Cloth Snapshot, Example 1 . . . . . . . . . . . . . . . . 77

6.5 Decomposed Cloth Snapshot, Example 2 . . . . . . . . . . . . . . . . 78

6.6 Decomposed Cloth Snapshot, Example 3 . . . . . . . . . . . . . . . . 78

6.7 Shattering algorithm pseudo-code . . . . . . . . . . . . . . . . . . . . 80

6.8 Animation Snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.9 RV Count vs. n for sphere test . . . . . . . . . . . . . . . . . . . . . 84

6.10 RV Count ratio vs. n for sphere test . . . . . . . . . . . . . . . . . . 85

viii



Acknowledgements

This thesis is the result of much reading, thinking, discussing, experimenting, writing

and re-writing. But it is not a journey I have had to make alone. I am grateful to

the following people for their help and companionship throughout:

• My supervisors, Uri Ascher and Dinesh Pai, for their invaluable guidance,

insight and support.

• My family and friends for their patience and support in my research, and the

many late nights it entailed. An honourable mention goes out to the illustrious

Paula Obedkoff for her late-night help in editing this thesis.

• My friends and colleagues in the SCV and Imager labs, who I was fortunate

enough to work with. In particular I would like to thank Robert Bridson, Chen

Greif, Michiel van de Panne and David Pritchard for many helpful suggestions

and stimulating conversations.

Eddy Boxerman

The University of British Columbia

November 2003

ix



Figure 1: Cloth draping over a sphere. (Snapshot taken from our simulator.)

x



Chapter 1

Introduction

“The mathematician may be compared to a designer of garments, who is utterly

oblivious of the creatures whom his garments may fit. To be sure, his art originated

in the necessity for clothing such creatures, but this was long ago; to this day a

shape will occasionally appear which will fit into the garment as if the garment had

been made for it. Then there is no end of surprise and delight.”

— David van Dantzig

Simulating the motion of cloth is an integral component of virtual character

animation. Believable animations are now expected in feature films, and simulation

relieves animators from the burden of animating this motion by hand. Garment

designers and textile engineers are also interested in predicting the motion and drape

of specific fabrics, thereby reducing the need to manufacture garment prototypes.

Games and virtual reality applications are the next frontier.

Whereas engineers and garment designers are interested in the realistic mod-

elling of fabrics, computer graphics researchers tend to place more emphasis on

computational speed - so long as it looks realistic or attractive. Fast, accurate

1



and general techniques are the ideal. To this end, significant advances have been

achieved, and this remains an active area of research.

In this thesis we present a number of methods which reduce the compu-

tational costs of simulating cloth, without losing accuracy or generality. We also

discuss aspects of the modelling process, and its interaction with simulation meth-

ods.

The remainder of this chapter identifies the specific contributions of this the-

sis, as well as the experimental environment. Chapter 2 presents an overview of

previous work in the area. Chapter 3 describes cloth modelling in general and the

model we use in this thesis, including an improved damping model. Chapter 4 de-

scribes time-integration techniques as applied in the cloth simulation community,

and presents a new “adaptive implicit-explicit” technique to improve performance.

Chapter 5 illustrates a conjugate gradient technique commonly used in cloth simula-

tion, presenting a proof and novel performance improvements to the method. Chap-

ter 6 proposes a decomposition method which can further improve the performance

of cloth simulators. Finally, Chapter 7 offers conclusions and future directions.

1.1 Contributions

Until [6], explicit time-stepping techniques were the norm in cloth simulation. Since

then, implicit techniques have dominated the field. Recently, implicit-explicit (IMEX)

techniques have also seen use [12, 19, 30]. We introduce a new type of IMEX scheme,

called “adaptive IMEX,” which takes advantage of the simulation parameters - lo-

cally in both space and time - to improve the efficiency of the computation. This

also improves the sparsity of the system that must be solved at each time step. We

build upon this and present a method that opportunistically decomposes the cloth

2



mesh into multiple components that can be solved separately and in parallel.

The modified preconditioned conjugate gradient technique introduced in [6]

is widely used in the cloth simulation community. We present methods to improve

the performance of this technique in the form of a preconditioner for the constrained

problem, and a better initial guess.

Finally, excessive damping has been a topic of concern in cloth simulation,

particularly in the context of implicit methods. This was partially alleviated by the

model introduced by Choi and Ko [14], however their formulation damps rigid body

rotations. We correct this by using a projected material damping model.

1.2 Implementation and Experiments

We have developed a cloth simulator using Java 1.4.1 which we used for all experi-

ments described in this thesis. These were run on a 2.53GHz Pentium 4 with 2GB

RAM and a GeForce4 graphics card, running Red Hat Linux 9 (Shrike).

Our results are presented within the flow of the thesis where relevant. For

the reader’s convenience, all experiments are listed here:

• Section 4.1.3: Stability of a forward-backward Euler Scheme.

• Section 4.2.4: Effect of Projected Damping (with Implicit Integration).

• Section 4.4.3: Stability, Results and Performance of an AIMEX Scheme.

• Section 5.3.1: Constrained Preconditioner: Unconstrained and Constrained

Cases.

• Section 6.4: Decomposing Cloth: Costs and Performance.

3



Chapter 2

Previous Work

Over the past twenty years, the computer graphics community has applied a variety

of techniques to the cloth simulation problem. In this section we provide a brief

overview of the relevant research in the field. More in-depth expositions and histories

can be found, where relevant, throughout this thesis.

It should be noted that the engineering community has also approached this

problem, generally from a more quantitative point of view, typically employing finite

element methods (FEM). Although we briefly discuss these methods in Chapter 3,

they are not investigated in this thesis. Some principal papers in this area are

[5, 16, 52, 64] and Chapter 4 of [32].

A thorough survey of early work in the field can be found in Ng and Grims-

dale [42]. A year later, Gibson and Mirtich [27] presented a less focused but more

general survey of deformable modelling techniques in computer graphics. The sec-

ond chapter of [32] presents a more recent overview of cloth simulation techniques.

Finally, the most recent comprehensive summary of the field was presented in Brid-

son’s thesis [10].

The first cloth simulation was produced in 1986 by Weil [62], who used a geo-

4



metric technique involving catenaries to mimic the static drape of fabrics suspended

at constraint points. In the same year, Feynmann [25] employed a model based on

continuum mechanics — along with a multigrid solver to minimize the energy of the

system — to predict the shape of fabrics draped over simple solids.

The work of Terzopoulos et al. [53, 54] followed, providing a more general

solution — also based on continuum mechanics — to predict the dynamics of one,

two and three-dimensional elastic models. They employed Lagrange’s equations of

motion, finite-difference discretizations, and a semi-implicit time integration scheme

in their solution. Their model also supported contact with solids and simple aero-

dynamic forces. Their work set the bar for further research.

Starting in the early 1990s, the group at MIRAlab in Geneva (Carignan,

Volino, the Thalmanns, et al.) began tackling the problem of simulating clothing

on virtual actors [13, 38, 56, 57, 60]. They began with the model of Terzopoulos et

al. [53], tailoring it especially for cloth by improving on the damping formulation

and collision response with solids. They also introduced self-collision detection and

response for cloth. They have since continued to work on virtual clothing, adopting

newer models as they emerged in the literature, and making contributions along the

way. Some of these contributions include the engineering of virtual clothing design

software, self-collision consistency tracking, the geometric addition of wrinkles dur-

ing simulation [28], and studies on the efficiency and behaviour of various numerical

methods [58, 59] (including an implicit midpoint technique).

In 1994, Breen, House and Wozny [9] presented a new cloth model, based

on particle systems and springs. They argued that cloth is a mechanism of warp

and weft fibres — not a continuum — and that their model is thus more appro-

priate. Using data from the Kawabata Evaluation System [37] and minimizing the

5



cloth’s energy via a gradient descent algorithm, they predicted the static drape of

real materials quite accurately. In 1996, House, DeVaul and Breen [33] applied a

Newtonian formulation to particle systems to simulate cloth dynamics. However,

due to the stiffness of the springs required to maintain the cloth’s structure, they

chose to model the structure using fixed-length constraints. They solved this using

a hierarchical Lagrange multiplier technique, specifically devised for the problem.

A year later, DeVaul [18] proposed an interesting iterative technique to solve the

constraint model. Although particle systems have become a mainstay in cloth sim-

ulation, constraint modelling techniques have seen little use since that time.

In 1995, Provot [45] presented a simple particle system model to simulate

cloth dynamics efficiently. He also tackled the issue of stiffness — which he referred

to as the “super-elastic” effect — by post-processing each time step, iteratively

enforcing constraints: springs that were stretched by more than 10% were relaxed

(shortened), thereby stretching neighbouring springs which were then relaxed, and so

on until convergence was obtained. In practice, this method usually converged with

attractive results. In subsequent papers, he approached the problem of parameter

estimation (with Louchet and Crochemore [40]) and collision detection and response

[46].

In 1996, Eberhardt et al. [22] expanded on the work of Breen et al., expand-

ing the model to incorporate hysteresis and creases, and improving computational

efficiency.

In 1998, Baraff and Witkin [6] published their seminal cloth paper, introduc-

ing a semi-implicit time integration scheme which allowed for large simulation time

steps while maintaining stability. This proved to be a robust and efficient solution to

the stiffness problem. In the same paper they introduced a modified conjugate gra-

6



dient solver which allowed for constraint enforcement within the implicit technique,

as well as a semi-continuum cloth model which handled general mesh topologies.

More recently, Baraff et al. [7] introduced a post-processing technique to handle

degenerate cloth contact situations.

Since [6], others [17, 35] have attempted to improve the efficiency of this

approach at the cost of further accuracy. Further details are given on these, as well

as the original method, in Chapters 4 and 5.

Researchers at the University of Tübingen have been actively involved in

cloth research since the paper by Eberhardt et al. in 1996 [22]. Their research

spans issues in modelling [20, 21, 24], collision handling [23, 41], and numerical

methods [19, 30]. In particular, the numerical methods and implicit-explicit schemes

presented in these papers are discussed in Chapter 4. Also, Etzsmuss [24] presents a

particle system derived from a continuum mechanics formulation which is of interest

in Chapter 3.

In 2002, Choi and Ko [14] — building on Baraff and Witkin’s numerical

methods — presented a particle system model that overcomes the “post-buckling

instability” problems of previous models. Their model also uses a more realistic,

non-linear bending energy formulation. We employ a similar model in this thesis,

described in Chapter 3. More recently [15], they extended their model to support

more general triangular meshes.

Bridson et al. [10, 11, 12] focus on maximizing the realism of cloth simu-

lation. Their contributions include the robust handling of collisions, friction and

contact, a unique implicit-explicit scheme (further discussed in Chapter 4), and

other innovations.

7



Chapter 3

Cloth Modelling

“Truth is much too complicated to allow anything but approximations.”

— John von Neumann

“The best material model of a cat is another, or preferably the same, cat.”

— A. Rosenbluth, Philosophy of Science, 1945

Cloth is composed of woven threads. The weave pattern and thread types

that compose a piece of cloth determine the way it looks, the way it moves (dynam-

ics), the way it feels (its hand), etc. For an excellent introduction to woven fabrics

from a modellers’ perspective, see Chapter 1 of [32].

A piece of fabric can be described by its geometry and physical properties.

It can be idealized as a two dimensional surface moving in three dimensional space.

It can stretch (i.e., experience in-plane deformations: tangential to the surface),

and bend (i.e., out-of-plane deformations: perpendicular, or normal, to the sur-

face). Cloth’s resistance to stretching is typically much greater than its resistance

to bending. In addition, most fabrics do not resist stretch orthotropically: they

stretch diagonally, or shear, more easily than along the fibre directions. A standard-

8



ized system for measuring a fabric’s resistance to these deformations is the Kawabata

Evaluation System [37].

Unfortunately, as with many real phenomena, it is impossible to exactly

model cloth, or to simulate its motion. This would require modelling at the quan-

tum level. Even if we fully understood the physics involved, the problem would

be computationally intractable. Our goal must be more modest: we seek only to

approximate the motion of cloth. The properties we seek in our physical model are:

• Fidelity, with respect to the dynamics (and statics) of real cloth.

• Efficiency, from a computational standpoint.

• Elegance, so it can be explained, understood, and implemented with a mini-

mum of difficulty.

In this chapter, we present a brief overview of the two dominant cloth models

in the literature: continuum and particle-system models. We then show a relation-

ship between these formulations which will prove useful in the next chapter. A

description of particle systems follows — in particular the model we use throughout

this work, based on Choi and Ko’s model [14] with an improved damping formula-

tion. We also include a description of external forces, such as aerodynamic effects,

collisions and friction.

3.1 Continuum vs. Particle-System Models

3.1.1 Continuum Model

Continuum formulations have their origins in elasticity theory, which is the study

of the deformation of elastic continua [48]; it has a long and rich history which

9



includes such names as Euler, Bernoulli, Poisson, Green, Laplace and many others.

Continuum formulations consider the body to have a homogeneous structure, which

allows the underlying physics to be modelled as a system of partial differential

equations.

Continuum formulations are often employed by the engineering community

in modelling cloth, which they solve numerically using the finite element method.

The finite element method divides the body into a set of elements and seeks to

find approximations to functions which satisfy deformation equilibrium equations

between the elements; continuity of the function is enforced. A variety of element-

types have been used in this way, including plates, shells, and beams.

Continuum formulations, in various simplified forms, have also been em-

ployed by the graphics community. Terzopoulos et al. [53, 54] solved simplified

elasticity equations using a finite difference technique. Baraff and Witkin [6] used a

triangulated mesh to represent the cloth structure, using a continuum formulation

on a per-triangle basis for in-plane deformation, and the angle between adjacent

triangles to measure out-of-plane deformation.

3.1.2 Particle-System Model

The other common choice for modelling cloth is the so-called “particle system”

(sometimes referred to as a “mass-spring” system). A simple example is shown

in Figure 3.1. These models represent the body as a set of discrete point masses;

the masses are interconnected by damped springs which resist deformation of the

structure.

Breen et al. [9] first introduced particle systems for simulating cloth in 1994.

They argued that cloth is not a homogeneous material, but a mechanism of threads

10



Figure 3.1: A section of a simple particle-system model for cloth

woven into an interlocking network; the fabric is not held together by molecular

bonds, but by friction. They ran various simulations with their model, comparing

their results with real data, and found reasonable correspondence.

Conceptually, modelling cloth as a particle system is quite intuitive, hence

its appeal. Of course, particle systems found in the literature are usually more

sophisticated than that depicted in Figure 3.1. A variety of different models have

been used, with as many opinions as to which is best.

3.1.3 Relationship between Continuum and Particle-System Mod-

els

The whole of mathematics may be interpreted as a battle for supremacy between

these two concepts [the continuous and the discrete]. This conflict may be but an

echo of the older strife so prominent in early Greek philosophy, the struggle of the

One to subdue the Many. But the image of a battle is not wholly appropriate, in

mathematics at least, as the continuous and the discrete have frequently helped one

another to progress. — E.T. Bell

11



F

L

A

x

Figure 3.2: A member undergoing axial deformation

One might ask how these two popular models are related; do they give sim-

ilar results? A number of researchers have investigated these questions. In [36],

Kass presents a simple equivalence between these models in one dimension. In [24],

Etzmuss et al. show their particle system represents a spatial semi-discretization of

the continuum equation. They also provide experimental results to back this claim.

Eischen and Bigliani also perform a comparison between the two models in Chapter

4 of [32]; again, results are fairly congruent. As a general rule, it seems that the dif-

ferences within the varying particle-system models and continuum formulations are

as great as the differences between the two categories of models. So, given the close-

knit relationship between particle-system and continuum formulations, arguments

about which is the better model may be immaterial.

We present here a relationship between particle-system and continuum for-

mulations in 1D. In this case, they are identical. Material damping (energy dissipa-

tion due to internal friction) is included in this analysis. This relationship will be

used in the next chapter to derive stability conditions for various time-integration

schemes.

The physical scenario is depicted in Figure 3.2. We have a truss (or cloth

fibre) which is constrained to deform in the axial direction. It has the following

(constant) material properties:

• length L

12



x

m j-1 m j m j+1

k s k s

Figure 3.3: Zoomed in on the corresponding 1D particle system

• constant cross-sectional area A

• mass per unit length ρ

• Young’s modulus E

• Damping coefficient β

The PDE from continuum mechanics that models this system is

ρü = EA
∂2u

∂x2
+ β

∂2u̇

∂x2
(3.1)

where u is the material strain and u̇ is the strain rate [43].

A particle model of this system would look like Figure 3.3. The truss is

divided into a set of n point-masses m1 . . . mn, each separated by a damped spring

of length h (where h = L
n−1

), spring constant ks, and damping constant kd. Each

point-mass has a mass ρh ( ρh
2

at the boundaries). The relationship between E

and ks, or between β and kd, is not immediately evident — but will soon become

apparent.

The force f on a given particle j is given by

fj = ks(xj+1 − xj − h)− ks(xj − xj−1 − h) + kd(ẋj+1 − ẋj)− kd(ẋj − ẋj−1)

= ks(xj+1 − 2xj + xj−1) + kd(ẋj+1 − 2ẋj + ẋj−1)

13



where xj and ẋj are the respective position and velocity of the particle j.

The dynamics of the system are governed by Newton’s second law f = mẍ.

We obtain

ρhẍj = ks(xj+1 − 2xj + xj−1) + kd(ẋj+1 − 2ẋj + ẋj−1). (3.2)

We now apply a change of variables to (3.2). For this simple 1D case, the

strain u is simply the difference between a mesh point’s current and original po-

sitions, given in body coordinates. Taking the truss member’s left boundary as

the body’s origin, the relationship between the position x of a mesh point and its

displacement u, along with their first and second time-derivatives, are given by

xj =

j
∑

i=1

h+ uj = jh+ uj

ẋj = u̇j

ẍj = üj .

Applying this to (3.2) (and cancelling jh terms), we obtain

ρhüj = ks(uj+1 − 2uj + uj−1) + kd(u̇j+1 − 2u̇j + u̇j−1). (3.3)

Recognizing the standard difference operator for the second order spatial derivatives

∂2uj

∂x2 = 1

h2 (uj+1 − 2uj + uj−1), (3.3) becomes

ρüj = ksh
∂2uj

∂x2
+ kdh

∂2u̇j

∂x2
(3.4)

which is of the same form as (3.1) for a particular point in the system.

We now see that the two formulations are identical for this simple 1D case.

Moreover, we see the relation between the parameters of the continuous and the

particle-system formulations:

14



stretch

shear bend

Figure 3.4: Choi and Ko model, showing the connectivity structure for stretch, shear
and bend springs.

EA = ksh (3.5a)

β = kdh (3.5b)

This result will be experimentally verified and made use of, for various time-

integration schemes, in the next chapter.

3.2 The Cloth Model

In this work, we employ a model similar (but not identical) to that used by Choi &

Ko [14]. See Figure 3.4. Each particle in the grid is connected to its four nearest

neighbours by stiff stretch springs. Each particle is also connected to its four diagonal

neighbours by (less stiff) shear springs. Finally, each particle is connected to its eight

next-nearest neighbours by (weak) non-linear bend springs.

15



Of course, other options are available. In [9], Breen et al. handled shear

using angular (as opposed to axial) spring energies, and used a curvature-based

energy function in the warp and weft thread directions to handle bending (similar

in principle to Choi & Ko, but different in implementation). In [22], Eberhardt et al.

expanded on the Breen model to include non-linear effects such as hysteresis. In [12],

Bridson et al properly isolate the bending mode in a particle system by using the

angle between adjacent triangles. In [24], Etmuss et al. handled shear and bending

using finite-difference approximations for a continuum model; they also introduced

a way to handle transverse contraction (non-zero Poisson ratio) in particle systems.

Although some of these other models have certain advantages over the Choi

& Ko model, it is conceptually simple and has proven to give attractive results.1

Our formulation differs from Choi & Ko’s in two respects:

1. We use different stiffnesses for the stretch and shear springs. This is a more

general model; most fabrics have a lower resistance to shear; and varying the

shear stiffness affects the visual behaviour of a fabric dramatically. Others

have done this as well [45, 11].

2. We use a different damping model. This is further described in Section 3.3.

1However, despite its bending model being based on experimental data, the resulting
simulations have only been evaluated — at least, in the literature — using the “eye”-norm
(i.e., visual results). No comparison has yet been made against real data, nor has it been
numerically compared to other models that have been more rigorously evaluated.

16



Spring Forces and Jacobians

As in [14], the stretch and shear springs are linear. The force acting on particle i

due to the deformation between it and particle j is

fi =











ks(|xij − L|) xij

|xij |
: |xij | ≥ L

0 : |xij | < L
(3.6)

where xij is the difference between the two particles’ position vectors (xj −xi), and

L is the spring’s rest length. The Jacobian matrix of this force vector is

∂fi
∂xj

=











ks
xijx

T
ij

xT
ijxij

+ ks(1− L
|xij |

)(I− xijx
T
ij

xT
ijxij

) : |xij| ≥ L

0 : |xij| < L

(3.7)

Note that this formulation guarantees the positive definiteness of the matrix A in

(4.11).

One feature of this model is its non-linear handling of bending resistance.

The equilibrium shape of buckled cloth is approximated to be a circular arc. The

curvature is thus determined as a function of the axial spring strain
|xij |
L

, and the

corresponding restorative force is (corrected here and) expressed as2

fi =











0 : |xij | ≥ L

fbend(
|xij |
L

)ks
xij

|xij |
: |xij | < L

(3.8)

Choi & Ko approximated f as a fifth-order polynomial function of the axial strain.

Following their methodology, we have computed this polynomial to be:

fbend(
|xij |
L

) = f(s) = −11.541s4 + 34.193s3 − 39.083s2 + 23.116s − 9.713 (3.9)

The Jacobian matrix of this force vector is

∂fi
∂xj

=











0 : |xij | ≥ L
dfbend

d|xij |

xijx
T
ij

xT
ijxij

: |xij | < L
(3.10)

2Choi and Ko replaced this equation with a simple linear model for small deformations.
See [14] for details. We have also done this.

17



where a term has been dropped to ensure its positive definiteness.

A unique feature of this model is its unification of bending and compressive

resistances. Cloth is resistant to stretching, but has little resistance to compression;

it responds by buckling (folding, wrinkling) out of the plane. In an attempt to model

this, Choi & Ko disable any stretch (or shear) spring that is in compression; the

compressive bending springs thus take over and simultaneously resist both bending

and compression. While this method delivers convincing silhouettes, it does not

guarantee preservation of area. In practice however (non-degenerate cases), area is

generally preserved.

Damping Forces and Jacobians

We do not use Choi and Ko’s damping model, but instead use a projected damping

model that is presented in Section 3.3, along with the corresponding forces and

Jacobians.

Note that we also take advantage of two other features specific to the Choi

& Ko model:

1. All internal (material) forces are modelled using axial springs; this simplifies

the stability analysis carried out in the next chapter.

2. The stiff (stretch and shear) springs are inactive in regions of the cloth that

are in compression; this makes the mesh easier to decompose. Details on this

can be found in Chapter 6.

18



3.3 Damping in Cloth Particle Models

Technically speaking, mass-spring systems should be called mass-spring-damper sys-

tems. Physical bodies — fabrics included — are not perfectly elastic; they dissipate

energy during deformation. Thus for each ideal spring in our model, there is a

corresponding ideal damper. Alternatively, we can think of the springs as being

visco-elastic, thereby taking on the role of both ideal spring and damper.

An ideal spring stores the energy that deforms it, and attempts to release

that energy (in an equal amount) by exerting a restorative force. An ideal damper,

on the other hand, dissipates energy by opposing relative motion. For a damper

connecting two particles i and j in 1D, the forces on the particles are

fi = −fj = kd(vj − vi) (3.11)

where v = ẋ is a particle’s velocity.

When extending this to a 3D cloth model, many authors [14, 17, 35, 19, 30]

have simply used

fi = −fj = kd(vj − vi). (3.12)

Or worse still, some authors [45, 56] have used

fi = −kdvi. (3.13)

This is often unsatisfactory, as the model (3.12) damps rigid body rotations. In the

case of cloth, this causes out-of-plane damping.3

Consider how cloth moves: if held under tension and then released, we do

not observe it oscillating back and forth like a spring; instead it returns to rest in

3The model (3.13) is worse, damping all motion.

19



an unstretched state. A system that behaves in this way is categorized as critically-

damped.

In [45], Provot states:

Another lack of realism can be seen during the animation of the

sheet: this “super elongation” does not come to stabilization easily, and

leads to a high amplitude oscillation around the equilibrium position of

the sheet. To avoid oscillation, it is therefore necessary to increase the

damping coefficient Cdis. Though this operation can indeed suppress any

oscillation, one of its shortcomings is that the sheet then looks like it has

been immersed in some oily fluid and its movement loses its realism.

This has been a common complaint throughout the cloth simulation litera-

ture, especially in the context of implicit integration schemes (more on this in the

next chapter); dynamic wrinkling and waving of the cloth is lost. And although this

effect is partially mitigated by using (3.12) instead of (3.13), it still poses problems.

The problem can be summarized as follows: cloth resists stretching much

more stiffly than bending, and as such it requires much greater spring and damping

constants for its structural connections. However, the damping formulation does

not behave as required: its effect “bleeds” out-of-plane, and the large magnitude of

the in-plane damping coefficient impedes bending of the model.

This effect is minimized in [14] by using an extremely small damping con-

stant. However, this can cause odd-looking, in-plane oscillations to occur, especially

in “hard-constraint” situations.

All this can be easily remedied by restricting the damping to act only along

20



the direction of the connection, which is by definition in the plane. Thus, we use

fi = −f j = kd(
vT

ijxij

xT
ijxij

)xij (3.14)

where vij = vj−vi. This projects the velocity difference onto the vector separating

the particles, and only allows a force along that direction.

Damping Forces and Jacobians

In Choi and Ko’s model, they simply have

fi = kd(vj − vi)

and the Jacobian

∂fi
∂vj

= kdI

which as already stated damps rigid body rotations.

Instead, we use 3.14. The Jacobians for this formulation have the terms

∂fi
∂vj

= kd

xijx
T
ij

xT
ijxij

(3.15)

and

∂fi
∂xj

=











kd

xT
ijxij

[xijv
T
ij + (xT

ijvij)(I− 2
xijx

T
ij

xT
ijxij

)] : xij · vij ≥ 0

0 : xij · vij < 0

(3.16)

In order to maintain positive definiteness — analogously to the spring force — the

damping force only acts during elongation. However, despite this filtering, we have

found the inclusion of the ∂f
∂x

term to detract from the stability of our semi-implicit

solver, and have therefore dropped it.

Since damping issues have been most problematic for implicit time-integration

schemes, we present experimental results in that context in Section 4.2.

21



3.4 External Forces

The modelling of external forces such as aerodynamics, collisions and friction are

necessary for producing realistic cloth simulations. This section briefly discusses our

implementation of these phenomena.

3.4.1 Aerodynamic Forces

The model we have used for air resistance is a simple one, similar to [22], where the

force on each particle is:

fair =
1

2
ρcwA(n̂ · vrel)vrel (3.17)

where ρ is the specific weight of air, cw is the resistance coefficient, A is the surface

area represented by the particle, n̂ is the unit surface normal at that point, and vrel

is the velocity of the particle with respect to an ambient wind vector.

For a more realistic treatment of aerodynamic effects in cloth simulation, see

Ling’s exposition in Chapter 7 of [32].

3.4.2 Collisions and Friction

A great deal of effort has been spent on collision handling in the cloth simulation

community [11, 57, 41, 6, 46]. And although the subject is both challenging and

interesting, we do not contribute to this area of research. We have, however, im-

plemented collision detection, response and friction in our simulator; this section

briefly describes our implementation.

22



Cloth-Cloth Contact

We have used a voxel-based technique for cloth-cloth collision detection, similar to

that proposed by [63] (and also used by [14]). At each time step, the space enclosing

the cloth is voxelised and each particle is registered in the appropriate voxel. Each

particle is then tested for proximity with each other particle in its own voxel and

its neighbouring voxels. If two particles lie within a given distance dmin from each

other, a stiff, damped spring force4 is used to separate them. These forces are

handled implicitly where necessary (see Section 4.4). In practice we have found a

value of dmin = 0.6h, where h is the mesh spacing, to work well. This has proven

to be an efficient and surprisingly robust (if somewhat crude) method to handle

most cloth-cloth contact situations. The main drawback of using a particle-particle

method — rather than one that considers point-triangle and edge-edge collisions —

is the “floating” effect: cloth does not appear to come into full contact with itself.

However, for fine meshes this is barely noticeable.

Cloth-Solid Contact

As for solids, our implementation is restricted to collections of simple implicit sur-

faces (boxes, spheres, cylinders, etc.). As such, a simple set of inside-outside func-

tions exist for each solid, against which each particle is tested. Detection is thus

easily performed.

For cloth-solid collision response (including friction), we have used the method

presented in [6]. When a cloth particle has penetrated a solid surface, its motion

is constrained using the MPCG method (see Chapter 5) to push it to the surface.

4The damping used here is non-projected (i.e., Equation 3.12 is used); this roughly
simulates kinetic friction. We have not implemented a solution for cloth-cloth static friction.

23



The constraint force is then calculated as the (unprojected) residual of the MPCG

algorithm. If this force becomes attractive (i.e., causing the cloth to stick to the

solid), the constraint is released. As has been noted in [30, 12], if the particle is

completely ejected from the surface, a bouncing phenomenon occurs. Instead, the

particle is moved some fraction of the distance to the surface. We have found a

value of 0.9 to work well. This maintains cloth-solid contact so that friction can be

applied.

If a particle’s velocity is low relative to the colliding surface, static friction is

applied: the particle becomes fully constrained (ndof(i) = 0). Alternatively, if the

constrained tangential force fT exceeds some fraction of the normal force fN , such

that fT > µstaticfN , the particle is allowed to slide along the surface (ndof(i) = 2),

and a kinetic friction force is applied ffric = µkineticfN opposite the direction of

relative motion.

24



Chapter 4

Time Integration

Given some initial configuration of the cloth, along with external forces, we wish to

predict how it will move over time.

More formally, in the case of a particle system, we are working directly with

a semi-discretization in space, solving an initial value problem (IVP) by integrating

a set of ordinary differential equations (ODEs) in time using the method of lines. See

Ascher and Petzold [2] for a general reference on the numerical solution of ODEs.

It is convenient to write the coupled set of ODEs as a single large system,

expressed as

M ẍ = f(x, ẋ). (4.1)

Where ẍ is the vector of particle accelerations, f is the force vector, and M is the

mass matrix. For a cloth mesh consisting of n particles, ẍ and f are vectors of size 3n,

and M is a 3n x 3nmatrix defined asM = diag(m1,m1,m1,m2,m2,m2, . . . ,mn,mn,mn).

Many time integration techniques have been employed in the literature. Work

in the late 1980s by Terzopoulos et al. [53, 54] used a semi-implicit solver. Sub-

sequently, explicit methods — mainly explicit Euler and the classical, fourth order

Runge-Kutta (RK4) — dominated the field until Baraff and Witkin [6] proposed a

25



semi-implicit backward Euler scheme in 1998. This scheme has favourable stability

properties1, and although it is only first order accurate and may occasionally diverge,

it has provided significant improvement over previous techniques in situations where

large time steps are desirable. As such, implicit methods have since become the new

paradigm in cloth simulation. In [14], Choi and Ko used a second order backward

differentiation formula (BDF2). Recently, researchers at the university of Tübingen

[19, 30] have employed an implicit-explicit (IMEX) solution technique [4].

An excellent analysis of time integration techniques in the context of cloth

simulation can be found in Hauth et al. [30]. Despite significant differences, their

work is probably closest in spirit to our own.

There are several considerations when choosing a time integration technique,

the most common ones being accuracy and stability. But there is more involved; one

must also examine the nature of the true solution, and seek a solver which behaves

similarly in some specific sense. For instance, one may ask: are there conserved

quantities (such as energy), or is the solution damped?

In this chapter we present an overview of explicit, implicit, and IMEX

schemes tailored to the context of cloth simulation. Stability and damping analyses

are presented for several schemes. We then present a new IMEX technique, called

“adaptive IMEX”, which adaptively applies explicit and implicit schemes locally in

both space and time to improve the efficiency of the computation. Experimental

results are included.

1and perhaps not so favourable damping properties

26



4.1 Explicit Integration

Almost all explicit schemes used in the cloth simulation literature are of the one-step,

Runge-Kutta type; these methods are based on quadrature schemes.

Given an IVP in canonical form

y′ = φ(t,y), y(t0) = y0, (4.2)

a general, explicit, s-stage Runge-Kutta [2] scheme can be written in the form

Yi = yn + k

i−1
∑

j=1

aijφ(tn + cjk,Yj), 1 ≤ i ≤ s

yn+1 = yn + k

s
∑

i=1

biφ(tn + cik,Yi).

Where yn is the approximate solution at time tn = nk, k is the time-step size,

and the Yi’s are intermediate approximations to the solution. The coefficients are

chosen so as to maintain consistent quadrature approximations, and cancel error

terms to maximize the accuracy of yn.

4.1.1 Forward Euler

The simplest scheme of this type is the familiar forward Euler:

yn+1 = yn + kφn.

where φn ≡ φ(tn,yn). It is a first order accurate method. Although this scheme is

rarely used in robust implementations, it serves as a convenient starting point for

explanation and analysis.

The system (4.1) is a second order differential equation; in order to solve it

numerically, we first put it into canonical form (4.2). Defining v ≡ ẋ, we re-write

27



(4.1) in the form (4.2)

d

dt







x

v






=







v

M−1f(x,v)






. (4.3)

Applying forward Euler we have the following update formula:






∆xn

∆vn






=







xn+1 − xn

vn+1 − vn






= k







vn

M−1f(xn,vn)






. (4.4)

Unfortunately, forward Euler has poor numerical stability properties. It relies

on damping — either in the model, or artificially introduced in the scheme — to

maintain stability; otherwise, the solution “explodes.”

4.1.2 Forward-Backward Euler

For second order systems of ODEs such as (4.3), a better choice than forward Euler

is the forward-backward (FB) Euler scheme [3]:






∆xn

∆vn






=







xn+1 − xn

vn+1 − vn






= k







vn+1

M−1f(xn,vn)






. (4.5)

The update to v uses a forward Euler scheme, while the update to x uses a backward

Euler scheme. Note that the method is still explicit (vn+1 is simply evaluated first).

In the absence of damping (i.e., the dependence of f on v), the ODE (4.3)

is Hamiltonian [29] and the method (4.5) is both symplectic and symmetric. In the

presence of damping, these beautiful properties are lost, but the scheme is still more

appropriate. Unlike forward Euler, the FB version does not require the addition

of damping to maintain stability. And as will be seen in Section 4.3, it can be

incorporated more naturally within an IMEX scheme.

It is easy to show that FB Euler is also the more “natural” choice. Assuming

for the moment that f is a function of x only, upon eliminating v from (4.5) we

28



obtain

xn+1 − 2xn + xn−1 = k2M−1f(xn).

Doing the same for (4.4), we obtain

xn+1 − 2xn + xn−1 = k2M−1f(xn−1).

The former equation is centered as one would expect, whereas the latter is not.

4.1.3 Stability Analysis of FB Euler

A common method used in ODE analysis to determine the stability of a numerical

scheme is to analyze its performance on the test equation

y′ = λy.

Such an analysis for various explicit and implicit schemes can be found in [2]. A more

specific analysis in the context of cloth, including the calculation of eigenvalues, can

be found in [30]. Here we analyze the stability of the FB Euler scheme applied to

our cloth model by looking at the corresponding PDE and applying a von Neumann

Fourier analysis [51].

Linearizing Equation (4.5) about the cloth’s rest state (accounting only for

stretch springs), and eliminating v, we obtain

xn+1 − 2xn + xn−1 =
ksk

2

ρh2
(D+D−)xn +

kdk

ρh2
(D+D−)(xn − xn−1), (4.6)

where D+D− is the second order finite difference approximation in two dimensions.

Following the same methodology as seen in Section 3.1.3, the corresponding PDE

to this discretization is

ρẍ = ks∇2x + kd∇2ẋ, (4.7)

29



where ∇2 is the Laplacian operator. Proceeding, we collect x terms in (4.6) as

xn+1 = (2 + (
ksk

2

ρh2
+
kdk

ρh2
)D+D−)xn − (1 +

kdk

ρh2
D+D−)xn−1.

Applying a Fourier transform in space to this equation, it becomes

x̂(t+ k, ξ) = (2− (a+ b)β2)x̂(t, ξ)− (1− bβ2)x̂(t− k, ξ),

where ξ is a wave number — or mode — in the data, a = ksk2

ρh2 , b = kdk
ρh2 , β2 =

4(sin2 ζx

2
+ sin2 ζy

2
), and ζx = ζy = ξh (assuming a homogeneous spatial discretiza-

tion). Now, following Strikwerda’s notation [51], the amplification polynomial for

this scheme is

Φ(g, ζx, ζy) = g2 + ((a+ b)β2 − 2)g + (1− bβ2)

and we demand that the magnitude of all roots of this polynomial satisfy |grooti | ≤ 1.

Applying the quadratic equation, the roots are

g± =
1

2
(2− (a+ b)β2 ±

√

(a+ b)2β4 − 4aβ2).

In order to satisfy our criterion (for all cases of ξ), we must have (a + 2b) ≤ 1

2
.

Finally, we can state our stability criterion for the discrete system as

κ = (a+ 2b) =
k

m
(ksk + 2kd) ≤

1

2
. (4.8)

This result2 — although of a different form — is similar to the eigenvalue

analysis in Hauth et al. [30] and the “numerical difficulty” in [59]. In this work,

we refer to κ as the numerical stiffness of the discretization. It is an important

(dimensionless, but grid dependent) parameter that will be used later in this chapter

as well as in Chapter 5.

2note that the mesh spacing h is buried within the parameters m, ks and kd

30



Experiment: Stability of FB Euler

In this experiment we show the validity of the theoretical stability criterion (4.8).

To this end, many simulations were run using a wide variety of parameters; for each

set of parameters, the critically stable time step size k was found using a bisection

search (accurate to within two significant digits). A time step size is deemed stable

if the energy of the system does not grow unboundedly (i.e., beyond some small

margin of error).

In one dimension, the test scenario resembles Figure 3.2. In this case, the

discretizations resulting from the particle system and continuous models are identi-

cal. As such, the stability criterion3 holds exactly. Results for this simple case are

not included.

The results for the two and three dimensional cases are very similar, so we

only include the more general, three-dimensional case here.

In three dimensions, the test scenario resembles Figure 4.1; a square sheet of

cloth — held at two corners — is released from the horizontal position and swings

until coming to rest. Simulation parameters are chosen randomly as a permutation

of the following values:

• size of system (number of particles): 10× 10, 20× 20, 30× 30

• h, mesh spacing (in m): 0.001, 0.01, 0.05, 0.1, 1

• ρ ( m
h2 ), cloth density (in kg

m2 ): 0.01, 0.1, 1, 10, 100

• ks, stretch stiffness (in N/m): 0, 10, 100, 1000, 10000

• ks, shear stiffness (in N/m): 0, 10, 100, 1000, 10000

3in one dimension this is k

m
(ksk + 2kd) ≤ 1

31



• kd, stretch damping (in N · s/m): 0, 0.01, 0.1, 1, 10

• kd, shear damping (in N · s/m): 0, 0.01, 0.1, 1, 10

Note that the units used here are employed consistently throughout this work. These

values are a superset of any realistic cloth simulation parameters.4 We tested 500

parameter sets in this way, each simulation being run for 1000 time steps.

Evaluating κ for these parameter sets yielded the range 0.35 - 2.69. So, al-

though the stability criterion held for most cases, for a few it did not (i.e., instability

occurred within the region κ ≤ 1

2
). We found that these violating cases represented

very high-density, low-stiffness, low-damping materials that stretched wildly, even

when using smaller time steps; these materials behave nothing like cloth. At the

other extreme, values larger than 1.0 tended to represent cases where extremely

small time steps were required so that little motion had an opportunity to occur

(i.e., perhaps instability hadn’t set in yet). We conclude that, for all intents and

purposes, the stability criterion (4.8) is valid in practice.

4.1.4 Damping Analysis

The role of numerical damping has become a topic of concern in the cloth simulation

community, particularly with respect to implicit methods (more on this in Section

4.2). It is enlightening to perform an analysis on the sources of damping in the

numerical solution, even for a simple system, which we present here.5

The scenario is as depicted in Figure 4.2: a single point-mass is connected

to the origin by a visco-elastic spring of zero rest-length, with spring and damping

4Except for bending stiffness, which is not included. However, in practice this term is
too small to affect stability at current mesh resolutions.

5An analysis of this type is carried out in [44] for the implicit Euler method, without
material damping.

32



Figure 4.1: Cloth suspended at two corners. (Snapshot taken from our simulator.)

m

Figure 4.2: A single mass-spring system

33



coefficients ks and kd respectively. The FB Euler update formula for this system is

xn+1 = 2xn − xn−1 − k2ksxn − kkd(xn − xn−1).

Defining wn+1 ≡ xn, we can rewrite this as a second order system







x

w







n+1

=







2− kkd − k2ks −1 + kkd

1 0













x

w







n

The matrix appearing in this update formula is known as the amplification matrix

Aamp. In order for a scheme to be stable, the eigenvalues λi of Aamp must satisfy

|λi| ≤ 1. Moreover, eigenvalues |λi| < 1 signify damping of the solution.

The magnitude of the eigenvalues of this system are |λi| = 1 − kkd. For

the case of no material damping, we see that the method does not damp either,

with |λi| = 1. On the other hand, a similar analysis for forward Euler yields |λi| =

1−k(kd−kks); we must have kd ≥ kks, otherwise the solution will grow unboundedly.

As will be seen in Section 4.2, (implicit) BDF schemes do the reverse; they introduce

an additional source of damping.

4.2 Implicit Integration

In recent years, implicit methods of various types have dominated the cloth simu-

lation literature. In this section we give a brief overview of implicit methods and

how they have been applied in cloth simulation. We also provide an analysis of the

damping effects these methods cause, along with experimental support for using the

projected damping formulation presented in Section 3.3.

34



4.2.1 Overview

Almost all implicit schemes used in the cloth simulation literature are of the multi-

step, BDF type. They require the evaluation of f(tn+1,yn+1) at each step n, thus

requiring the solution of a nonlinear system (for nonlinear f) at each time step.

For higher order methods, they use previous values of the solution and polynomial

interpolation to improve the accuracy. Again, see [2] for a general reference on these

schemes, and [30] for a presentation in the context of cloth simulation. A general

k-step BDF — which has order k — can be written in the form

k
∑

i=0

αiyn−i = kβ0φ(tn+1,yn+1),

Where α0 = 1 and β0 6= 0. The simplest schemes of this type — commonly used in

cloth simulation — are backward Euler (order 1)

yn+1 − yn = kφn+1,

and BDF2 (order 2)

3

2
yn+1 − 2yn +

1

2
yn−1 = kφn+1.

BDF are popular methods for solving stiff problems such as cloth. Although

there is no formal measure for the stiffness of a problem, we can characterize it by

looking at the time scales of the solution. In order to capture the details of the

highest frequency mode appearing in the solution, a numerical scheme must take

time steps smaller than the period of that mode. For some integration schemes, non-

compliance with this restriction leads to numerical instability or “blowup”. Other

schemes such as BDF, as they possess stiff decay properties, simply “smooth over”

the details of the solution that they cannot capture.

35



Stiffness typically manifests itself in the eigenvalues of the discrete system;

the greater the ratio between the smallest and the largest eigenvalues (which gener-

ally correspond to low and high frequency solution modes), the stiffer the system.

For the case of positive definite matrix operators, it is proportional to the condition

number (see, for example, Saad [49]) of the matrix.

In the case of cloth, there are widely varying frequencies in the solution:

high-frequency responses in the plane of the fabric, and low-frequency responses out

of the plane. For the purposes of animation, we are not interested in visualizing

the high-frequency, in-plane oscillations, but rather the low-frequency ones (e.g.,

waving, folding, wrinkling). In practice, BDF have proven to provide attractive

results while avoiding overly prohibitive time step restrictions.6 For the FB Euler

method applied to our cloth model, the parameter κ is a reasonable quantitative

measure of the system stiffness.

4.2.2 Implicit Methods in Cloth Simulation

Much effort has been spent in recent years on how to best apply implicit methods

to cloth simulation. Applying a backward Euler scheme to (4.3) results in






∆xn

∆vn






= k







vn + ∆vn

M−1f(xn + ∆xn,vn + ∆vn)






(4.9)

which is a nonlinear equation in ∆xn and ∆vn. A semi-implicit version of (4.9) is

obtained by using a first order Taylor series expansion of f

f(xn + ∆xn,vn + ∆vn) = fn +
∂f

∂x
∆xn +

∂f

∂v
∆vn. (4.10)

where ∂f
∂x

and ∂f
∂v

are the Jacobian matrices of the particle forces with respect to

position and velocity, respectively. This is equivalent to applying one Newton itera-

6Although they do dampen frequencies in all directions.

36



0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1360

Figure 4.3: Sparsity structure of LHS of (4.11)

tion for (4.9). In [6], Baraff and Witkin adopt this idea and develop expressions for

the Jacobians of the various internal forces. Due to the local connectivity structure

of the mesh, these are sparse matrices, and they are further made to be symmetric

positive definite by dropping some terms. Substituting this in (4.9) and rearranging,

they obtained

A∆v = (I − kM−1 ∂f

∂v
− k2M−1 ∂f

∂x
)∆v = kM−1(fn + k

∂f

∂x
vn). (4.11)

The sparsity structure of this matrix is depicted in Figure 4.3 for a 10 by 10 regular

mesh; each point represents a 3x3 matrix. They then proceed to solve this equation

at each time step using a conjugate gradient algorithm with a reported cost of

O(n1.5); more will be said about this in Chapter 5. All this results in a practical

semi-implicit method which often gives stable, visually appealing results.

The Baraff and Witkin methodology has several drawbacks, and others have

attempted to improve upon it. Desbrun et al. [17] make further approximations to

achieve an O(n), unconditionally stable scheme. They pre-invert the matrix (for the

37



cloth’s rest configuration) and use this solution at every time step, applying a post-

correction factor for excessive deformation and global rotational momentum. Their

technique, however, is inaccurate and does not generalize well to large systems. Kang

et al. [35] improve upon this approximation, but ultimately, they are simply using a

single, Jacobi-like solution iteration in place of a conjugate gradient one. Volino and

Magnenat-Thalmann [58] used a weighted implicit-midpoint method that appeared

to give attractive dynamic results but which is less stable and may be difficult to

tune in practice. Parks and Forsyth [44] used a generalized-α method in an attempt

to mitigate some of the damping effects of implicit schemes, with some success. Choi

and Ko [14] used the more accurate BDF2, solving for ∆x instead of ∆v. Hauth

et al [30] also use BDF2 within an IMEX solver (more on this — along with the

method used by Bridson et al. [12] — in Section 4.3), and embed their version of

(4.11) within a Newton solver (whereas Baraff and Witkin silently perform a single

Newton iteration), making theirs more of a “fully implicit” technique.

4.2.3 Stability Analysis

In a manner similar to that presented in Section 4.1.3, it is fairly straightforward to

prove that backward Euler and BDF2 are unconditionally stable when applied to

(4.7). In practice, BDF have proven to be stable when applied to the full nonlinear

problem.

4.2.4 Damping Analysis

As aforementioned, numerical damping caused by BDF schemes has been a concern

in the cloth simulation community. One drawback to the model in [6] is that it

38



requires the artificial introduction of damping in order to maintain stability.7 Choi

and Ko’s model eliminates this requirement, but their damping formulation is not

ideal.8.

In this section we quantitatively demonstrate the damping caused by implicit

methods. We comment on this effect (both good and bad), and give experimental

results on the improvement gained by using the projected damping model presented

in Section 3.3.

Again considering the simple model presented in 4.1.4, for backward Euler

we write the system as







1 + kkd + k2ks 0

0 1













x

w







n+1

=







2 + kkd −1

1 0













x

w







n

The magnitude of the eigenvalues of this system are |λi| = 1

1+kkd+k2ks
≤ 1.9 This

shows us the nature of the numerical damping; even if we eliminate material damping

(kd = 0), the scheme will still damp the solution proportionally to ks and k2; for

“large” values of ks and k, the dynamics are lost. Of course, this effect is reduced

if smaller time steps are used, but that partially defeats the purpose of using an

implicit technique.

The problem here is subtle. Generally, we are not concerned with the fabric’s

in-plane oscillations.10 Moreover, the bending stiffness of cloth is very small. So

why do implicit methods damp this mode? There are three mechanisms:

7In fact, Bhat et al. [8] found that — when attempting to optimize simulation parameters
to fit captured cloth motion — the method proved unworkable; they ended up resorting to
an explicit RK4 method.

8And of course there is still the numerical damping associated with BDF
9The given value for |λi| holds only if k2

d
< 4ks, otherwise the system possesses purely

real eigenvalues (i.e., it is non-oscillatory). Such a system is categorized as overdamped ; we
are not really interested in this case.

10In fact, implicit schemes do a better job of reducing the “springiness” that earlier cloth
simulations suffered from. They, in effect, change the model qualitatively.

39



1. Excessively large time steps. We are certainly interested in visualizing the out-

of-plane behaviour of cloth; taking time steps comparable in size (within an

order of magnitude) to this mode’s period will damp it. (It will also produce

drastically inaccurate results.)

2. In-plane stiffness and damping both “bleeding” out-of-plane, caused by inac-

curacies in the numerical solution. This is more significant when using an

approximate implicit solution technique; a true implicit solver — such as that

published in [30] — should experience this to a much lesser degree. (This is

one of the reasons for their improved results.)

3. A poor damping model. In mass-spring systems this can be remedied by using

projected damping — as we will now demonstrate.

Experiment: Effect of Projected Damping (with Implicit Integration)

In this experiment we show the benefits of using the projected damping model

presented in Section 3.3. To this end, we present three simulation examples: one

with no model damping, one using non-projected damping, and one using projected

damping.

All of these simulations are solved using the semi-implicit scheme (4.11). The

configuration is “two corners pinned” as in Figure 4.1. The simulations share the

following parameters in common: mesh size = 40× 40 particles, h = 0.025, ρ = 0.5,

ks (stretch and shear) = 1000, ks (bend) = 0.01, k = 0.01; collision response and

aerodynamic forces are disabled.

The energy plots for these three cases can be seen in Figures 4.4 - 4.6. In each

figure, the left plot shows the kinetic, internal, gravitational and total system energy

40



0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3
system energies vs. time

kinetic
gravity
internal
total

0 0.5 1 1.5 2 2.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
internal energies vs. time

stretch
shear
bend

Figure 4.4: System energy plots — no damping

over time (two seconds). The right plot zooms in on the internal energies: stretch,

shear and bend. Figure 4.4 shows the case for no damping; energy dissipates slowly,

but spurious oscillations are evident in the internal energies. This is noticable in

the corresponding animation as a (subtly) overly “bouncy” behaviour. Figure 4.5

shows the case for non-projected damping, using kd = 0.1: energy dissipates far too

quickly11. This can be mitigated by using smaller values of kd, but then damping

has little effect. Finally, Figure 4.6 shows the case for projected damping, using

kd = 10. Despite the large damping constant, overall system energy dissipates

at approximately the same rate as for the case of no damping. Moreover, the

oscillations evident in the no-damping case are eliminated — the cloth looks less

“bouncy.”

Visually, the differences between the no-damping and the projected-damping

cases are subtle. Nevertheless, this demonstrates that if in-plane damping is desired,

it is the projected formulation that should be used.

11And for larger values of kd, the cloth doesn’t even fall at the correct speed.

41



0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5
system energies vs. time

kinetic
gravity
internal
total

0 0.5 1 1.5 2 2.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
internal energies vs. time

stretch
shear
bend

Figure 4.5: System energy plots — non-projected damping

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3
system energies vs. time

kinetic
gravity
internal
total

0 0.5 1 1.5 2 2.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
internal energies vs. time

stretch
shear
bend

Figure 4.6: System energy plots — projected damping

42



4.3 IMEX Integration

Of course, our options are not restricted to explicit or implicit. An entire spectrum

of implicit-explicit (IMEX) schemes, combining the two, are possible. In this section

we give a brief overview of IMEX methods and how they have been applied in cloth

simulation.

4.3.1 Overview

See Ascher et al. [4, 3] for general references on IMEX schemes for time-dependent

PDEs. The essential idea is to separately treat the stiff and non-stiff parts of the

PDE (or ODE) — to handle the stiff parts with an implicit method, and the non-

stiff parts with an explicit method. Conceptually, we separate our canonical form

(4.2) as

y′ = ψ(t,y) + φ(t,y), y(t0) = y0, (4.12)

where ψ is the collection of stiff terms, and φ is the collection of non-stiff terms.

This is a common approach for solving advection-diffusion PDEs. It combines the

stability of an implicit scheme where needed, and the simplicity of computation of

an explicit scheme where possible.

A general, linear s-step IMEX scheme can be written as

1

k
yn+1 +

1

k

s−1
∑

j=0

ajyn−j =
s−1
∑

j=−1

cjψ(yn−j) +
s−1
∑

j=0

bjφ(yn−j),

where c−1 6= 0. Other constants are chosen so as to maintain consistency and obtain

optimal order s. The simplest, first order scheme of this type is a combination of

explicit and implicit Euler

yn+1 = yn + k(ψn+1 + φn).

43



4.3.2 IMEX Methods in Cloth Simulation

Strictly speaking, all published cloth simulation techniques have been of the IMEX

type; external forces such as friction and aerodynamic effects are evaluated at the

current state and assumed constant throughout the time step. Typical cloth tech-

niques have applied implicit methods only to the internal cloth energies/forces. In

recent years, however, a few researchers have consciously applied IMEX schemes to

cloth simulation.

Bridson et al. [11, 12] applied a similar IMEX approach to cloth as that

taken for advection-diffusion equations [4].12 They applied an implicit method to

the damping term and an explicit method to the stretching term. Looking at the

stability criterion (4.8), this makes sense for large kd (kd � kks), since the damping

term then contributes much more than the stretching term. It is unclear if this

is the best approach for cloth simulation, however, since most examples in the

literature have kd � kks
13. In any case, they take time steps commensurate with

the stretching stiffness term, which requires smaller time steps than what is typically

used in conventional implicit solvers (but which also allows for much finer collision

resolution). Their methods are thus slower than most, but produce undeniably

convincing results. Many applications, however, have more stringent performance

and laxer accuracy requirements.

Hauth, Eberhardt et al. [19, 30] based their IMEX splitting on connection

type: stretch springs are handled implicitly, shear and bend “springs” are handled

explicitly. This categorization applies to both the stretching and the damping terms.

The IMEX splitting we use more closely resembles this approach.

12In fact, Equation (4.7) is very similar to the 2D advection-diffusion equation; although
it is second order in time, it contains both a hyperbolic term and a diffusive term.

13Even in the high-damping experiment in Section 4.2.4, kd ≈ kks

44



0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460

Figure 4.7: Sparsity structure of LHS of (4.11) for IMEX with implicit stretch only

A one-step IMEX scheme applied to Equation (4.3) gives







∆xn

∆vn






= k







vn + ∆vn

M−1[g(xn + ∆xn,vn + ∆vn) + f(xn,vn)]






. (4.13)

This results in backward Euler for the stiff terms collected in g and FB Euler for

the non-stiff terms in f .

In the case of a semi-implicit solver that uses a single Newton iteration at

each time step, handling a spring connection explicitly is as simple as dropping

(or zeroing) its contribution to the Jacobian matrices. The sparsity pattern of the

matrix A — when only the stretch springs are handled implicitly — is as depicted

in Figure 4.7 for a 10 by 10 regular mesh (compare this to Figure 4.3). Thus the

computation at each time step is reduced for such an IMEX scheme. We need not

calculate the Jacobians for the explicitly handled connections. More importantly, the

matrix A is sparser, so matrix-vector products (the dominant cost of the conjugate

gradient solver) are less expensive to compute.

45



4.3.3 Higher Order IMEX Methods

A second order accurate, semi-explicit BDF method for (4.12), taken from Ascher

et al. [4], is

yn+1 =
1

3
(4yn − yn−1) +

2k

3
(2φn − φn−1 + ψn+1), (4.14)

Adapting this to our second order system of ODEs, we obtain







3

2
xn+1 − 2xn + 1

2
xn−1

3

2
vn+1 − 2vn + 1

2
vn−1






= k







vn+1

M−1[2fn − fn−1 + gn+1]






(4.15)

Ideally, we would like a stability criterion analogous to (4.8) for this system.

A stability analysis for this scheme — applied to the advection-diffusion equation —

is carried out in [4]. Adapting this result to our purposes (i.e., defining and testing

an adaptive IMEX scheme of order 2) is left to future work.

4.4 Adaptive IMEX Integration

Given the exposition thus far, the idea of using an adaptive IMEX (AIMEX) tech-

nique is fairly natural. Instead of deciding a-priori what IMEX splitting to apply to

the governing PDE/ODE, we decide this on the fly based on the current simulation

parameters and our stability criterion (4.8). Moreover — in cases where parameters

vary locally in space — we do this on a per-spring-connection basis. In this section

we provide details on the method, the motivations behind it, justifications for its

use, and experimental results.

A note here before continuing: AIMEX schemes should be applicable to more

than just cloth simulation. We posit (but do not investigate in this thesis), that they

may be useful in any adaptive PDE solver, or for solving highly variable coefficient

PDEs.

46



4.4.1 Implementation Details

Given a semi-implicit particle-system cloth simulator such as that found in Choi and

Ko [14], implementing the AIMEX method is simple. When evaluating the forces

applied on a pair of particles by a given spring-connection, we simply evaluate the

expression (4.8)

k

m
(ksk + 2kd) ≤ 0.5.

If the relation is true, we skip the associated Jacobian calculation; if it is false,

we evaluate the Jacobian as normal. This allows us to optimize the computation

required. Following are some practical details.

• In practice, we do not want to use an explicit scheme in its marginally stable

regime. So instead of using 0.5 on the right-hand-side of the equation, we

typically use 0.2.

• This stability criterion is only applicable for the first order scheme (4.13). A

different scheme would require the derivation and use of a different, though

similar, criterion.

• The stability criterion as formulated is only applicable to axial springs, which

makes the Choi and Ko model an ideal candidate to prototype this method.

In the case of angular or deflection (bend) springs, a separate criterion would

need to be derived and used. Moreover, although we do not investigate the

Baraff and Witkin semi-continuous formulation here, we believe the criterion

for this model to be very similar (only evaluated on a per-triangle basis).

• In practice, we always handle the bend springs explicitly. (Otherwise, a dif-

ferent stability criterion would be needed for these non-linear springs.)

47



• The evaluation of the criterion is a cheap computation. However, in the case

where parameters do not vary locally in space (i.e., the Choi and Ko model),

we can minimize the computation by evaluating the criterion once per time

step and per connection type.

4.4.2 Motivation

When first experimenting with IMEX splitting, we were motivated by a simple yet

encouraging result: by treating the bend springs explicitly, the performance of our

simulator increased significantly. The next candidate was the shear springs. We

imagine the researchers at the University of Tübingen had a similar experience. In

their case, they chose to treat the shear springs explicitly as well.14 This is fine when

simulating fabric with a much smaller resistance to shear than stretch. But this is

not the case for all materials; if these resistances are similar in magnitude (in the

Choi and Ko model [14] they are equal), it makes sense to handle shear implicitly.

Deciding this during simulation is a better option.

Clearly the motivation to use an AIMEX scheme is to minimize computation

in the face of adaptive solution techniques.15 In various examples from the literature,

parameters such as the time step k, mesh-spacing h, particle mass m, and spring

and damping stiffnesses ks and kd change during the course of the simulation:

• Adaptive Time Stepping (varying k) — Many researchers have used adaptive

time stepping in the context of cloth simulation. Baraff and Witkin [6] based

theirs on the proposed strain for a given time step: the state is rejected and

14They may have had other motivations for doing this since their shear formulation in-
volves a more complex, four-particle relation.

15Of course, for non-adaptive techniques, the splitting can simply be chosen at the begin-
ning of the simulation.

48



the time step halved if the cloth is stretched more than 10% its original length.

Hauth et al. [30] based theirs on the convergence rate of their Newton solver,

decreasing the time step upon slow convergence. Others, such as Bhat et al.

[8] based theirs on the solution accuracy.

• Non-linear Springs (varying ks) — Some researchers have used non-linear

springs to improve the realism of their model. Eberhardt et al. [22] used

non-linear springs (based on measured cloth data) to model hysteresis effects.

Choi and Ko. [14] approximated cloth’s bending response by a fifth order

polynomial (3.9).

• Adaptive Mesh Spacing (varying h, thereby altering m, ks and kd) — Several

researchers [34, 55, 61] have used adaptive local mesh refinement based on a

curvature-based criterion for cloth. Etzmuss et al. [23] based their refinement

on collisions.

4.4.3 AIMEX Experiments

The AIMEX method presented above is both simple and useful, but questions re-

garding stability, quality of results, and performance come to mind. In this section

we answer these questions and provide supporting experimental evidence. Note that

in these experiments, where comparisons are made against an implicit scheme, we

use the semi-implicit backward Euler scheme (4.11).

Experiment: Stability of an AIMEX Scheme

First of all, can we really expect global stability based on the local stability criteria?

Formally, though the local stability criterion is based in sound theory, we have no

49



proof for this. Experimentally, the method has worked without problem.16 Finally,

ours is not the first scheme to adjust its update formula locally based on stability

criteria — upwind schemes for hyperbolic PDEs (see LeVeque [39] and references

therein) do this as well, and have proven to be a very useful class of techniques.

In this experiment, we show that stability is maintained even when individ-

ual spring connections are handled variably — using either an explicit or implicit

scheme — during the course of the simulation. To this end, we have run a series of

simulations using adaptive time stepping. The time step size is varied (rather arbi-

trarily) between two extrema such that for the largest steps the stretch and shear

springs are handled implicitly, whereas for the smallest time steps these springs are

handled explicitly.

We have tested two different adaptive time step schemes for various simula-

tion parameters. In the first scheme, the time step size simply alternates between

the minimum and the maximum values; thus the handling of the stretch and shear

springs are alternately handled explicitly and implicitly. In the second scheme, the

time step size smoothly varies back and forth between the two extrema; at one

point the handling of the shear springs changes, while at another the handling of

the stretch springs changes. Stability was maintained for all cases.

Figures 4.8 - 4.10 are animation snapshots from one of these experiments.

Wireframe images of the underlying mesh are displayed: black connections represent

those that are being handled implicitly, grey connections are explicit, and missing

connections are springs that are inactive due to compression17. Bend springs are

not visualized.

16We suspect that for stiffly non-linear PDEs (where coefficients can change dramatically
due to a small change in state), the method may fail; however, for problems of this type, we
suspect that the semi-implicit technique of [6] would also fail.

17this is a feature of the Choi and Ko model as explained in Section 3.2

50



Figure 4.8: Wireframe snapshot when time step is large. All active connections are
implicit (black)

Figure 4.9: Wireframe snapshot when time step is modest. Stretch connections are
implicit (black), shear connections are explicit (grey).

51



Figure 4.10: Wireframe snapshot when time step is small. All active connections
are explicit (grey)

An example of the sparsity structure of A when using an AIMEX scheme

(for implicit stretch and shear) is visualized in Figure 4.11.

Experiment: Visual Results of an AIMEX Scheme

Next we investigate how using an AIMEX solver affects the solution. First, there

are accuracy considerations, but so long as both the explicit and implicit parts are

consistent and of the same order of accuracy, this is not an issue. But there is also

the quality of the results, such as the damping behaviour. If one area of the cloth is

being solved implicitly, will it appear much more damped than an area that is being

solved explicitly? Fortunately, the differences turn out to be relatively insignificant.

Analytically, we can determine this difference by looking at the magnitudes

of the system eigenvalues along with the stability criterion; we seek the maximum

52



0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 370

Figure 4.11: Sample sparsity structure when using an AIMEX scheme

magnitude of the difference

|1− kkd −
1

1 + kkd + k2ks
| (4.16)

within the domain defined by k
m

(ksk + 2kd) ≤ 0.5. Clearly (kkd + k2ks) is bounded

by m
2
, as is kkd. Thus, for m� 1, (4.16) is also small. Therefore, when it is possible

to use either scheme (within the stability region of both), they behave similarly.

In this experiment, we support this claim with visual results. To this end,

many simulations were run using a wide variety of parameters. For each set of

parameters, the variation between the AIMEX and implicit schemes is measured

(using the largest infinity-norm on the position vectors over one second of simulated

time). We then observe the worst cases by eye to judge the animation fidelity.

Simulation parameters are chosen randomly as a permutation of the following

values:

• configuration: suspended from two corners, draping over a square table, drap-

ing over a sphere

53



• size of system (number of particles): 10× 10, 20× 20, 40× 40

• h, mesh spacing (in m): 0.001, 0.01, 0.05, 0.1

• ρ ( m
h2 ), cloth density (in kg

m2 ): 0.03, 0.1, 0.3, 1

• ks1, stretch stiffness (in N/m): 10, 100, 1000, 3000

• ks2, shear stiffness (in N/m): 10, 100, 1000, 3000

• ks3, bend stiffness (in N/m): 0.001, 0.01, 0.1

• kd1, stretch damping (in N · s/m): 0, 0.01, 0.1, 1, 10

• kd2, shear damping (in N · s/m): 0, 0.01, 0.1, 1, 10

• kd, air damping (in N · s/m): 0, 0.001, 0.003, 0.01

• k, time step (in seconds): 0.0001, 0.001, 0.005, 0.01, 0.02

For most cases, the largest difference was under 10% of the mesh spacing h,

which is not generally noticable to the eye. For some extreme cases — which re-

semble stretchy latex more than cloth — differences approached h. Not surprisingly

(given the analysis above), these cases have a high mass density. Two animation

snapshots are included here to show the difference in results; the grey surface is

the result of the implicit solver, and the purple surface is the result of the AIMEX

solver. Figure 4.12 shows the worst case scenario and Figure 4.13 shows an average

case.

Experiment: Performance of an AIMEX Scheme

Finally, we investigate the performance benefits of using an AIMEX scheme. To

this end, we compare it to the implicit scheme across 500 random simulations as

54



Figure 4.12: Snapshot of worst case scenario difference between AIMEX and implicit
schemes. Cloth is pinned at its two upper corners (it’s highly stretched), with the
following parameters: size = 40 × 40, ρ = 10, h = 0.03, ks1 = 100, ks2 = 1000, ks3

= 0.001, kd1 = 1, kd2 = 0, kd = 0.001, k = 0.001. Maximum error is 1.68h.

Figure 4.13: Snapshot of average case scenario difference between AIMEX and im-
plicit schemes. Cloth is draping over a table with the following parameters: size =
20 × 20, ρ = 0.1, h = 0.1, ks1 = 1000, ks2 = 1000, ks3 = 0.001, kd1 = 1, kd2 = 1,
kd = 0.003, k = 0.01. Maximum error is 0.63h (the visual differences are due to
aliasing).

55



in the previous experiment. For each set of parameters, we compare the number of

conjugate gradient iterations and the total running time of the two schemes. The

results are in table 4.1, where the “Speed Ratio” is defined as Computation−timeAIMEX

Computation−timeimplicit

and the “CG Iteration Ratio” is defined as CG−iteration−countAIMEX

CG−iteration−countimplicit
. The results are

divided into four categories, depending on how the AIMEX scheme handled the

stretch and shear spring connections. Cloth-cloth collision handling was disabled

for this series of experiments, as was rendering. Thus the computation time is

dominated by the internal dynamics — with a small amount going towards cloth-

solid collisions (≈ 5%).

Connection Types # Runs Average Average CG
(Stretch/Shear) Speed Ratio Iteration Ratio

Implicit/Implicit 412 0.83 1.00

Implicit/Explicit 18 0.71 1.02

Explicit/Implicit 37 0.71 0.96

Explicit/Explicit 33 0.47 0.47

Table 4.1: Performance statistics: AIMEX vs. Implicit schemes

Note that for the random parameter distribution used in this experiment,

the “implicit/implicit” splitting occurred much more frequently than the others.

In practice, however, the “implicit/explicit” splitting is also quite common. Thus

the AIMEX scheme generally requires 17-29% less computation time than the fully

implicit scheme. The number of conjugate gradient iterations is essentially unaf-

fected.18

18Except in the “explicit/explicit” case, where A becomes block diagonal for the AIMEX
solver and converges in one iteration using the block-diagonal preconditioner. Note that for
this fully explicit case, a CG solver is not required, but is used for simplicity/uniformity of
treatment.

56



Chapter 5

The Modified Conjugate

Gradient Method in Cloth

Simulation

“I can’t change the direction of the wind, but I can adjust my sails to always reach

my destination.”

— Jimmy Dean

The partly implicit time integration techniques discussed in the previous

chapter require the solution of a sparse linear system at each time step. In their

seminal paper [6], Baraff and Witkin present a modified preconditioned conjugate

gradient (MPCG) algorithm for solving such systems in the presence of certain types

of constraints.

In this chapter, we present a brief overview of the CG method, including pre-

conditioning; the MPCG method and the type of constraints it supports; an overview

of the proof of convergence of the MPCG method, along with some improvements

57



that follow, as given in Ascher and Boxerman [1]; and a new improvement to the

algorithm in the form of a better preconditioner for the constrained problem —

providing significantly faster convergence.

5.1 The Conjugate Gradient Method

The CG method was introduced by Hestenes and Stiefel in 1952 [31]. For a thorough

exposition, see [49]. For a more “gentle” introduction, see [50].

CG is a popular iterative method for solving large systems of linear equations

of the form

Ax = b,

where A is a sparse, positive-definite matrix. For systems of this type, the solution

x is also the vector that minimizes the quadratic form

f(x) =
1

2
xTAx− bTx + c

for any scalar c. Thus we can recast this into an optimization problem; it is a method

of optimized line-searches, where each direction is A-orthogonal — or conjugate —

to all previous ones (it is thus a Krylov-space method). It provides the exact solution

in n iterations for a system of size n. However, its popularity is due to its ability

to provide a “reasonably” accurate solution in O(
√
n) iterations for systems like the

ones we faced in the previous chapter. Each iteration involves one multiplication of

a vector by A. Thus, for a sparse n×n system containing O(n) entries, the method

typically requires O(n1.5) operations.

In addition, we can often obtain better convergence via preconditioning, a

technique used to cluster the eigenvalues of A more tightly and/or reduce its condi-

tion number. Ideally, we choose a matrix P that approximates A well, but is easy

58



x = x0

r = b−Ax

p = P−1r

bδ = rTp

δ = bδ

while δ > tol2bδ

s = Ap

α =
δ

pT s
x = x + αp

r = r− αs
h = P−1r

δold = δ

δ = rTh

p = h +
δ

δold
p

Figure 5.1: Preconditioned conjugate gradient algorithm

to invert (P must be positive definite as well). We can then solve our problem by

applying CG iterations to

P−1Ax = P−1b.

The number of iterations required now depends on the reduced condition number

of P−1A, but each iteration requires solving a linear system with P .

The algorithm is presented in Figure 5.1. Given b, A, an initial guess x0

and an error tolerance tol2, the algorithm produces an approximate solution x —

where r are the residuals, p are the search directions, and δ are the error-norms of

the current iteration.

59



5.2 MPCG (with corrections)

In the context of cloth simulation, the vector x represents the change in velocities

(or positions, as in [14]) at the current time step. At times, we wish to constrain

the particle from moving in certain directions; this typically occurs for cloth-solid

contact, where we wish to constrain a cloth particle from penetrating the solid.

Thus we wish to specify, in advance, the velocity change of certain particles in

certain directions.

For each particle i let ndof(i) denote its number of degrees of freedom: if

ndof(i) = 3 then there are no constraints on this particle; if ndof(i) = 2 then there

is one direction ξi (|ξi| = 1) of prescribed motion; if ndof(i) = 1 then there are two

mutually orthogonal directions ξi and ηi (|ξi| = 1, |ηi| = 1, ξT
i ηi = 0) of prescribed

motion; if ndof(i) = 0 then all motion is prescribed for this particle.

Define,

Si =



















































I ndof(i) = 3

I − ξiξT
i ndof(i) = 2

I − ξiξT
i − ηiη

T
i ndof(i) = 1

0 ndof(i) = 0

S = diag{S1, . . . , SN}. (5.1)

Baraff and Witkin [6] used S to define a filter operation, embedded in the

PCG algorithm, that operates on vectors to eliminate components in the constrained

directions. In [1], Ascher and Boxerman made the crucial observation that S is an

orthogonal projection. It can be used to decompose vectors as a direct sum. Thus,

60



if

x = u + v, u = Sx , v = (I − S)x,

then u and v are orthogonal, uTv = 0.

Here, the constrained problem can be written in terms of the projection ma-

trix S defined in (5.1) and a given vector z of dimension n (like x′s) such that the

problem is

SAx = Sb, (5.2a)

(I − S)x = (I − S)z. (5.2b)

In words, for each particle the equations of motion hold only in the subspace

projected by S, range(S), whereas in the subspace range(I −S) the given values of

z determine velocity (or position) changes1. As the two subspaces are orthogonal,

the two types of motion are separated. This is all written in the form (5.2). A full

proof of convergence is given in [1], where we show that the MPCG algorithm (with

corrections) reduces to applying PCG to a projected version of the problem (which

maintains positive-definiteness). The corrected MPCG algorithm is given in Figure

5.2.

There are two differences between this algorithm and that given in [6]. The

first is the stopping criterion b̂, which — in light of the proof — is the natural choice.

The other difference has a more profound effect on the performance of the algorithm;

it is the choice of initial iterate x. Whereas the original MPCG algorithm uses the

initial iterate x = z, we use x = Sx0 + (I − S)z, where x0 is the solution from

the previous time step. Being able to incorporate this information into the initial

guess — while still maintaining the constraints z — improves the performance of

1these are the constraints

61



x = Sx0 + (I − S)z

b̂ = S(b−A(I − S)z)

r = S(b−Ax)

p = SP−1r

bδ = b̂TP−1b̂

δ = rTp

while δ > tol2bδ

s = SAp

α =
δ

pT s
x = x + αp

r = r− αs
h = P−1r

δold = δ

δ = rTh

p = S(h +
δ

δold
p)

Figure 5.2: Corrected modified preconditioned conjugate gradient algorithm

62



the algorithm. Experimental evidence for some problem instances in [1] showed that

the number of iterations required by this version of the MPCG ranged from 45% to

75% of that required by the original algorithms.

5.3 Improved Preconditioner for MPCG

A number of researchers have attempted to improve the convergence of the MPCG

algorithm by choosing a better preconditioner. Baraff and Witkin [6] used a diag-

onal preconditioner, P = diag{A}. Choi and Ko [14] used a 3 × 3 block diagonal

preconditioner, reporting a 20% performance improvement; they also experimented

with incomplete Cholesky (IC) and incomplete LU (ILU) factorizations [49], but

reported no significant performance gain. In [30], Hauth et al. experimented with

IC and symmetric successive overrelaxation (SSOR) preconditioners, both of which

gave reported performance improvements of approximately 20%. An important dis-

tinction, however, must be made between the constrained and unconstrained cases.

This has not been done in the literature, and it is unclear which cases their results

apply to.

A significant improvement can be made by looking at the projected problem

and choosing a preconditioner accordingly. Equations (5.2) can be combined so that

the problem can be written as

(SA+ (I − S))x = Sb + (I − S)z. (5.3)

A good preconditioner should be an approximation to the matrix on the left hand

side of Equation (5.3), rather than to A. If we let C be the matrix consisting of the

3x3 diagonal blocks of A then a constrained preconditioner P can be defined as

P = SC + (I − S). (5.4)

63



This is also a block diagonal matrix which is easily inverted. Of course, in the

unconstrained case, this reduces to simply using the 3x3 diagonal blocks of A. Note

that although we employ a block diagonal C, any preconditioner for A which would

be effective in the unconstrained case could be used.

5.3.1 Constrained Preconditioner Experiments

In this series of experiments, we investigate the performance improvements (and

costs) that may be had by using the constrained preconditioner (5.4). In the pro-

cess, we make the important distinction between constrained and unconstrained

problems. As we will demonstrate, the preconditioner (5.4) does a much better job

in the constrained case.

All simulations in this set of experiments are solved using the semi-implicit

scheme (4.11). Cloth/cloth collision response is disabled to better see the perfor-

mance improvements/costs. A-Block refers to the preconditioner comprised of the

3x3 block diagonals of A, and CP refers to the constrained preconditioner (5.4)

based on A-Block.

Also, a note on CG tolerances: we use a value of tol2 = ck (where k is the

time step); this maintains the order of accuracy of the scheme. We have found a

value of c = 0.01 to provide stable results. Smaller values of c led to catastrophic

errors when calculating the constraint and friction forces from the residuals of the

MPCG algorithm (see Section 3.4.2).

Experiment: The Unconstrained (or Trivially Constrained) Case

In this experiment, we evaluate the performance of preconditioning for the case

where all particles have ndof = 0 (unconstrained) or 3 (trivially constrained). To

64



this end, we test three preconditioners: the identity I (i.e., no preconditioner), A-

Block, and the constrained preconditioner CP. The configuration is “two corners

pinned” as in Figure 4.1, for a 1 meter square sheet of cloth.

Simulation parameters are chosen randomly as a permutation of the following

values:

• size of system (number of particles): 5× 5, 10× 10, . . . 80× 80 (in increments

of 5)

• h, mesh spacing (in m): calculated as 1/size

• ρ ( m
h2 ), cloth density (in kg

m2 ): 0.05, 0.1, 0.2, 0.5

• ks1, stretch stiffness (in N/m): 300, 600, 1000, 2000, 3000

• ks2, shear stiffness (in N/m): 300, 600, 1000, 2000, 3000

• ks3, bend stiffness (in N/m): 0.001, 0.01, 0.1

• kd1, stretch damping (in N · s/m): 0, 0.01, 0.1, 1, 10

• kd2, shear damping (in N · s/m): 0, 0.01, 0.1, 1, 10

• kd, air damping (in N · s/m): 0, 0.001, 0.003

• k, time step (in seconds): 0.005, 0.01, 0.015, 0.02

We tested 500 parameter sets in this way, each being run for one second of simulated

time.

As expected, the CG iteration counts when using A-Block or CP are iden-

tical. This allows us to evaluate the additional cost of computing CP — which

on average took 0.8% longer than A-Block. Given this minor difference, all further

65



comparisons between the different preconditioners will be based on CG iteration

counts (as this is a more consistent indicator).

We plot in Figure 5.3 the number of CG iterations performed as a function

of n (number of particles) for the three preconditioners (here, A-Block and CP are

equal). In addition, the ratio between these counts is plotted in Figure 5.4. As can

be seen, the A-Block and CP preconditioners decrease the number of CG iterations

required by about 30%. Note that this improvement is greater than that stated in

[14]; a possible explanation for this will be seen in the next experiment.

Finally, note that the number of CG iterations required is not solely depen-

dant on the size of the problem n; it also depends on the stiffness of the problem

(e.g., larger time steps, higher spring constants, etc.). To demonstrate this, we also

plot the number of CG iterations vs. κ (4.8) in Figure 5.52. Looking at the ratio

between the counts in Figure 5.6, we see that the preconditioners do not simply pro-

vide a fixed improvement; it is apparent that the “stiffer” the problem is, the more

we gain by preconditioning. In extreme cases, the count is reduced by more than

50%. That being said, most sets of simulation parameters in the literature have a

value of κ in the range 102 − 103; we can thus expect reductions of approximately

30-35%.

Experiment: Constrained Preconditioner Performance Improvements

In this experiment we evaluate the performance of the same three preconditioners

(I, A-Block and CP) for the case of non-trivial constraints (i.e., particles having

ndof = 1 or 2). This occurs often when cloth is in sliding contact with solids (e.g.,

clothing).

2this holds for fixed n.

66



101 102 103 104
100

101

102

103
CG Iteration Count

I (none)
A−Block/CP

Figure 5.3: Plot: CG iteration count vs. number of particles (log/log plot). Uncon-
strained case.

101 102 103 104
0.66

0.68

0.7

0.72

0.74

0.76

0.78
CG Iteration Count Ratio: I vs. A−Block/CP

Figure 5.4: Plot: CG iteration count ratio vs. number of particles (semilog in x
plot). Unconstrained case.

67



100 101 102 103 104 105
100

101

102

103
CG Iteration Count

I (none)
A−Block/CP

Figure 5.5: Plot: CG iteration count vs. κ (log/log plot). Unconstrained case.

100 101 102 103 104 105
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
CG Iteration Count Ratio: I vs. A−Block/CP

Figure 5.6: Plot: CG iteration count ratio vs. κ (semilog in x plot). Unconstrained
case.

68



101 102 103 104
101

102

103
CG Iteration Count

I (none)
A−Block
CP

Figure 5.7: Plot: CG iteration count vs. number of particles (log/log plot). Con-
strained case.

To this end we test using the “cloth draping over a sphere” configuration as

depicted in Figure 1, for a 1 meter square sheet of cloth. Simulation parameters are

chosen from the same values as in the previous experiment. We tested 500 parameter

sets in this way, each being run for one second of simulated time.

We plot in Figure 5.7 the number of CG iterations performed as a function of

n for the three preconditioners. Note that here, the counts for A-Block and CP are

not equal. In fact — A-Block actually requires more iterations than I !3 However,

looking at the count ratios in Figure 5.8 we see that — for problems of any significant

size — we can still expect a 30% decrease in the number of CG iterations when using

CP.

As in the previous experiment, we plot the number of CG iterations vs.

κ in Figure 5.9, along with the count ratios in Figure 5.10. Again we see that

CP provides an improvement proportional to the stiffness of the problem, with a

3so I is actually a better approximation to the left hand side of (5.3) than A-Block.

69



101 102 103 104
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
CG Iteration Count Ratios

I/A−Block
I/CP

Figure 5.8: Plot: CG iteration count ratio vs. number of particles (semilog in x
plot). Constrained case.

10−1 100 101 102 103 104 105
100

101

102

103
CG Iteration Count

I (none)
A−Block
CP

Figure 5.9: Plot: CG iteration count vs. κ (log/log plot). Constrained case.

70



10−1 100 101 102 103 104 105
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
CG Iteration Count Ratios

I/A−Block
I/CP

Figure 5.10: Plot: CG iteration count ratio vs. κ (semilog in x plot). Constrained
case.

reduction of approximately 70% for typical cloth parameters. Conversely, the A-

Block preconditioner performs more and more poorly as the stiffness increases for

constrained problems. However, as seen in Figure 5.10, this may not have been

noticed in practice since A-Block performs similarly to I for typical problems.

Note that preconditioning can also decrease the complexity of solving such

systems. In [6], Baraff and Witkin stated the cost to be O(n1.5); others have echoed

this statement. Looking at the overall slopes in Figure 5.7, the iteration count for

the problem without preconditioning is O(n0.512), which is in agreement with the

literature. However, for the CP preconditioned problem we found the count to be

O(n0.436). Thus, although the effect is subtle here, other constrained preconditioners

may further decrease the asymptotic complexity of the problem.

71



Chapter 6

Decomposing Cloth

“... To grasp this sorry Scheme of Things entire,

Would we not shatter it to bits - and then

Re-mould it nearer to the Hearts Desire!

– Omar Khayyam

Imagine a tablecloth draped over a square table1. If we were to manipulate

one corner of the cloth (assuming it does not slip with respect to the table) we would

not affect the opposite corner. The same applies for the case of a virtual character

tapping its foot, or moving its hand — local motion doesn’t affect distant regions

of the cloth. It is unfortunate then that, using an implicit solver, the entire cloth

must be solved as a single system. It would be better if we could decompose it into

subsections which could be solved independently. But — where to “cut”?

As seen in Chapter 4, implicit time integration schemes require the solution

of linear systems of the form Ax = b. Solving this using the MPCG method

described in Chapter 5 has a computational cost O(n1.5), where n is the dimension

of the system. As seen in Section 4.3, the matrix A can become even more sparse

1or see Figure 6.1

72



Figure 6.1: Tablecloth draped over a square table. (Snapshot taken from our simu-
lator.)

when using the methods described in this work. In fact, it can sometimes become

sufficiently sparse so that it can be decomposed into a set of smaller systems. These

smaller systems can be solved individually — and thus more quickly.

In this chapter, we present the mechanisms that allow cloth to be decom-

posed. We then show how potential decompositions can be easily and quickly de-

tected. We also include some implementation details as to how the decoupled sys-

tems can be solved separately, in parallel, and with little data structure overhead.

Finally, we present our experimental results.

6.1 Decomposition Mechanisms

Our technique can be seen as a (simple) special application of domain decomposition

methods2 (see Quarteroni and Valli [47] and references therein). In our case, we

opportunistically seek independent subdomains such that their influence upon one

another can be reduced to constant boundary conditions for a given time step. As

such, we investigate two mechanisms by which the systems described in this thesis

2specifically, a zonal, non-overlapping method

73



Figure 6.2: Reordered, block-diagonal matrix. (Red squares highlight the two main
blocks.)

may be independently decomposed: sparsity and constraints.3

6.1.1 Mechanism 1: Sparsity

We begin with a simple example to demonstrate the concept of sparsity decompo-

sition. Looking closely at Figure 4.11, we may note that a reordering of the rows

and columns — corresponding to a different ordering of the particles — gives us the

structure seen in Figure 6.2; the two large, separate blocks of this matrix can be

solved independently.

For a solution technique such as that found in [6], the sparsity pattern of the

matrix is fixed and this kind of separation does not occur. The methods used in this

work, on the other hand, exhibit a changing sparsity pattern for two reasons. First, a

property of Choi and Ko’s physical model is that the structural springs (stretch and

3That said, more general domain decomposition techniques — either in the form of a
preconditioner to the linearized problem, or as a multi-domain/interface reformulation —
may prove useful for very large cloth meshes.

74



shear) do not act in compression4. Thus the associated Jacobian entries disappear

for any compressed spring. Second, the IMEX technique described in Section 4.3

handles spring connections implicitly at times and explicitly at other times. When

treating a connection explicitly, the associated Jacobian entries also disappear.

6.1.2 Mechanism 2: Constraints

In some scenarios, the motion of certain cloth particles is fully prescribed, as in the

case of static friction described in Section 3.4.2. This is handled by imposing such

constraints directly as described in Chapter 5, where ndof(i) = 0 (and Si = 0) for a

fully constrained particle i. In this case, the i’th row of A is zeroed, save for the ones

appearing along the diagonal; this particle’s motion is unaffected by the motion of

its neighbours (or by anything else for that matter, it is a known quantity). We can

take advantage of this since the influence of this particle on the rest of the system is

reduced to a constant (for the current time step), and the row/column pair can be

removed. In fact, when looking at the projected problem as described in Chapter

5, the rows and columns corresponding to fully constrained particles are “filtered”

or projected out. Thus constrained particles decrease the coupling of the system.

6.2 How to Decompose Cloth

Given the mechanisms just described, how can we detect in practice when indepen-

dent decompositions are possible? The answer lies in simple graph theory and the

relationship between matrices and graphs.

A symmetric, n x n matrix A can be represented by an undirected graph

G(V,E), where V is a set of n vertices and E is a set of edges, which are unordered

4Also, the bend springs do not act in extension, but this has little effect here.

75



1

3

4

2

56

1

3

4

2

5

6

x

x

xx

xx

x

x

xx

x

x x

x

Figure 6.3: A symmetric matrix A and its labeled graph, with x denoting a nonzero
entry of A.

pairs of vertices [26]. The ordered (or adjacency) graph of A is one for which the

vertices V are numbered from 1 to n, and i, j ∈ E if and only if aij = aji 6= 0, i 6= j.

Figure 6.3 illustrates the structure of a matrix and its labeled graph.

A graph is connected if every pair of vertices is joined by at least one path

through the graph. Otherwise G is disconnected and consists of two or more con-

nected components. In this case, there is a row ordering that will make the corre-

sponding matrix block diagonal. Thus we can determine if a reordering exists which

will make A block diagonal via simple graph searches.

Moreover, the graph has a clear association with the original physical prob-

lem: each vertex represents a particle, and each edge represents an active spring

(remember, some springs can become disabled) handled implicitly by the solver.

Intuitively, this makes sense; if a closed region of the cloth is connected to other

regions only by explicit connections (which are considered constant throughout the

time step), then it should be possible to solve for that region independently.

While the above explains how to handle graph connectivity, it doesn’t deal

with constrained particles. Consider a connected graph G that — by removing a

single, constrained particle — would become separated into two connected compo-

nents. Physically, these two components do not affect each other during the current

76



Figure 6.4: Decomposed Cloth Snapshot, Example 1. Cloth draping over a square
table. (Implicit stretch and explicit shear.)

time step. However, the constrained particle does affect each component as a fixed

boundary value. Thus, a constrained particle acts as a dead end during path traver-

sals; it is included in the currently searched component, but cannot be used as a

bridge to another component. This property is handled in the algorithm described

in the next section.

Before continuing, it is illustrative to see a few snapshots of decomposed

cloth; examples of this are seen in Figures 6.4-6.6. Particles of the same colour

belong to the same connected component; white particles are fully constrained.

6.2.1 Decomposition Algorithm

Having understood the connection between the mesh and the corresponding matrix

and graph, it is straightforward to implement our decomposing solver for cloth. We

describe here the additional data structures and algorithmic elements required.

The data structure overhead is quite low. Assuming the structure of the mesh

is represented by a connectivity graph (or something similar), we simply add a second

(initially empty) set of edges, representing the “implicit” connectivity graph. We

77



Figure 6.5: Decomposed Cloth Snapshot, Example 2. The cloth is constrained at its
center point and has just begun falling. Initial decomposition is clean and regular.
(Implicit stretch and explicit shear.)

Figure 6.6: Decomposed Cloth Snapshot, Example 3. Moments after Figure 6.5,
the decomposition has become quite thorough (colours are repeated).

78



also associate two integers with each particle: one, ndof , which specifies how many

degrees of freedom it has at the current time step, and another, group, specifying

which “group” it is a member of. Finally, we need a data structure to store our

group lists.5

The algorithm additions are also straightforward. At the beginning of each

time step, the edges of the implicit-connection graph are deleted. As spring con-

nections are calculated, an edge is added to the graph if the connection is handled

implicitly. When solving the system, graph searches are performed. Each connected

component that is discovered is handed off to an MPCG solver. Pseudo-code details

are presented in Figure 6.2.1.

6.3 MPCG Solution of Decomposed Components

We have not yet discussed how the MPCG solver must be changed to accommodate

these decomposed components. The change is a simple one. The MPCG solver is

modified to accept an additional argument: a list of particle numbers (corresponding

to row numbers) contained within the component to be solved. We can think of each

particle as “owning” the associated row in the matrix A and the vectors r, b, x, etc.

All operations (matrix/vector multiplies, inner products) are simply performed on

this row subset.

5The combination of all groups taken together is a list length of n, regardless of the
decomposition that occurs. Thus, a fixed length array can be used for this purpose to
amortize the overhead.

79



1: loop {main time-stepping loop}
2: reset forces, Jacobians, etc.
3: reset implicit connection graph (delete edges)
4: for all spring connections do
5: perform usual force and (possibly) Jacobian calculations
6: if connection is active and handled implicitly then
7: add edge to implicit connection graph
8: end if
9: end for

10: for all particles i do
11: calculate external forces, collisions, etc.
12: set z, and ndof(i) = {0, 1, 2, 3} (based on collisions with solids or otherwise)
13: end for
14: construct Ax = b as usual (e.g., 4.11)
15: // solve all decoupled systems
16: group(1 . . . n) = −1 // reset particles’ group membership
17: currentGroup← 1
18: for all particles i do
19: if ndof(i) == 0 (i.e., particle is fully constrained) then
20: group(i)← 0 // 0th group signifies full constraint
21: x(i) = z(i) // set prescribed solution
22: end if
23: end for
24: for all particles i do
25: if group(i) == −1 then
26: begin new list LIST (+ + currentGroup) and add i to it
27: group(i)← currentGroup
28: add all neighbours of particle i to search list
29: for all particles j in search list do
30: if group(j) == −1 then
31: add j to LIST (currentGroup)
32: group(j)← currentGroup
33: add neighbours of particle j to search list
34: end if
35: end for
36: pass LIST (currentGroup), along with A, x, z and b to MPCG solver
37: end if
38: end for
39: update system state (positions, velocities) given x
40: end loop

Figure 6.7: Shattering algorithm pseudo-code

80



6.4 Decomposing Cloth Experiments

Our decomposition technique offers attractive performance improvements, but there

is also a computational overhead.

The improvements come in two forms: smaller, decomposed components

converge more quickly (at times dramatically) than the system taken as a whole,

and the separate components can be solved easily in parallel. Also note that in

our algorithm, constrained particles are not a member of any group; row/vector

multiplications are simply skipped for these rows. This can represent a substantial

savings.6

The costs come in three forms. As described in Section 6.3, we perform

operations on row subsets; as such, we can no longer use BLAS routines to perform

vector inner products. We also need to perform graph searches as described in

Section 6.2.1; these can be done in O(n) time. Finally, we found that sorting

the row subset list that is passed to our MPCG solver is necessary. If this isn’t

done, matrix/vector multiplications are performed in an (almost) random row order,

causing severe caching overhead for large groups. This sorting can be done in O(n)

time as well. For reasonably large meshes, these costs are dominated by the cost of

the MPCG algorithm.

In the following series of experiments, we investigate these performance im-

provements and costs. All simulations are solved using the AIMEX scheme described

in Section 4.4.1 and using the constrained preconditioner (5.4).

6In fact, skipping rows which correspond to constrained particles can be implemented
independently from our decomposition technique; but it fits most naturally into this context.

81



6.4.1 Experiment: Cost Overhead of our Decomposing Solver

As stated above, there are overheads associated with our decomposition method.

In this experiment, we quantify this overhead by comparing the efficiency of our

decomposing solver against a non-decomposing (or full) solver in the worst case

scenario (i.e., where no decomposition is possible).7

The configuration is “two corners pinned” (depicted in Figure 4.1) for a

1.5 meter square sheet of cloth. Rendering and cloth/cloth collision handling was

disabled for this series of experiments. Thus the computation time is dominated

by the internal dynamics solver. Simulation parameters are chosen from the same

values as in experiment 5.3.1. We tested 500 parameter sets in this way, each being

run for one second of simulated time.

On average, our decomposing solver required 2.3% more computation time,

with insignificant variance across mesh size n.

The number of CG iterations, however, cannot be used as a metric for these

experiments. For most configurations, our decomposing solver performs many more

iterations than the full solver, but on smaller systems. As such, we use a row/vector

multiplication count (RV count), where the multiplication of a vector by one row

of the matrix A counts as one RV operation. This is a sensible metric and we

have found it to correspond well to CG computation times. In this experiment,

the average RV count of our decomposing solver was 0.8% less than the full solver,

showing that little decomposition occurred.

7Note that even in the worst cases we tried, some very minor decomposition occurs —
in locally compressed regions for instance. However the effect here is insignificant.

82



Figure 6.8: Animation Snapshots

6.4.2 Experiment: Performance Improvements of our Decompos-

ing Solver

In this experiment, we examine the performance improvements that can be had via

our technique in the case where decomposition is possible.

To this end, we compare the computation times and RV counts for the

same solvers as above. The configuration is “draping over a sphere” for a 1.5

meter square sheet of cloth.8 Rendering is disabled; however — to be realistic

— cloth/cloth collision handling is enabled, as this decreases the possibility of de-

composition. Simulation parameters are chosen from the same values as above.

We tested 500 parameter sets in this way, each being run for one second of sim-

ulated time. Two animations of a sample experiment can be seen at the fol-

lowing web addresses: http://www.cs.ubc.ca/∼eddybox/decomp sphere tex.mov and

http://www.cs.ubc.ca/∼eddybox/decomp sphere wire.mov, depicting textured and wire-

8The cloth sheet is not centered over the sphere. As such, in some experiments, the cloth
“sticks” and in some it “slips,” dependant on friction constants.

83



101 102 103 104
105

106

107

108

109
RV Count

Full
Decomposing

Figure 6.9: Plot: RV Count vs. n (loglog plot) for sphere test.

frame renderings respectively.9 Figure 6.8 presents snapshots from these animations.

We plot in Figure 6.9 the RV count as a function of n for the decomposing

and full solvers. In addition, the ratio between these counts is plotted in Figure 6.10.

As can be seen, for small meshes our decomposition technique offers little improve-

ment. However, for larger meshes (around 700+ particles), when the asymptotic

complexity of the CG algorithm comes into play, decomposition becomes useful,

offering a reduction in the RV count of approximately 20%. This translates directly

into a performance improvement of our CG solver (minus roughly 2% as seen in the

previous experiment).

During the course of our experiments, we often noticed small groups of par-

ticles being solved in a few CG iterations10 as opposed to, for example, 100 or more.

Thus we see an agreement with theory, and a clear view of the origin of our RV-count

9We recommend stepping frame by frame through the wireframe animation to observe
the decomposition process.

10single particles are always solved in one iteration, thanks to our 3 × 3 block diagonal
preconditioner

84



101 102 103 104
0.75

0.8

0.85

0.9

0.95

1
RV Count Ratio

Figure 6.10: Plot: RV Count ratio vs. n (semilox plot in x) for sphere test.

savings.

Parallel Solution of Decomposed Blocks

Of course one of the main advantages of this technique is its adaptability to par-

allelism. To demonstrate this we ran a simple experiment — picking one of the

nicely-decomposing test cases from above — on a dual processor machine. We do

this for three solvers: the full solver, our decomposing solver (DS1), and a small

extension to our decomposing solver that embeds the MPCG algorithm within a

java thread (DS2). In DS2 the main thread simply starts MPCG threads to solve

the decomposed systems, waiting until they are all done before proceeding with the

next time step.11

In our test case, DS1 required 18% less computation time than the full solver,

whereas DS2 required 30% less. This is a promising initial result and further inves-

11In practice we only create one thread per CPU. Additional threads provide no additional
benefit; on the contrary, they introduce overhead in the form of context switching.

85



tigation is warranted (e.g., using larger numbers of processors, memory architecture

impact, computing the spring forces/Jacobians in parallel, etc.).

6.4.3 Discussion of Results

As seen in the above experiments, our cloth decomposition technique becomes at-

tractive for large meshes — which is exactly where such performance improvements

are most welcome. But in practice, how often can we expect this decomposition to

occur? The answer depends on the physical scenario. For example, a tablecloth will

decompose more readily than a flag.

That said, we observed decompositions occurring with surprising regularity

for large meshes in many scenarios. In fact, the “sphere” scenario above does not

represent our best case performance; it simply seemed the most applicable. For

instance, in the case of a loose piece of fabric falling to rest on the ground, we

observed typical RV count reductions of 30-40%, and at times over 80%, implying

a five times speedup in our CG solver!

Of course, the real test is how well it works on virtual clothing. For wildly

flying skirts it may not be effective, but for pants, shirts, sweaters, socks, etc., we

believe the potential savings to be significant (better than our results in the “sphere”

experiment above). This may be a promising avenue for further research.

86



Chapter 7

Conclusion

In this thesis we have investigated a number of techniques that improve the efficiency

of cloth simulation, specifically targeting the semi-implicit methods that are popular

in the graphics community. Contrary to most other attempts to do this in the

literature, our methods do not sacrifice accuracy.

In Chapter 4, we developed a stability criterion for the FB Euler scheme

— applied to cloth — allowing us to devise an adaptive IMEX (AIMEX) scheme.

Our AIMEX scheme, which is simple to implement, optimizes the implicit/explicit

splitting, thereby decreasing the computational cost. Savings of roughly 30% are

typical.

In Chapter 5, we introduced a new, constrained preconditioner for the MPCG

algorithm popular in cloth simulation. In the presence of non-trivial constraints, this

preconditioner clearly outperforms other choices in the literature, providing roughly

a 30% reduction in the number of CG iterations required. Moreover, we showed that

proper preconditioning can reduce the asymptotic complexity of the computation.

Thus, as problem sizes grow, the benefits of preconditioning will only improve. The

same is true for problem stiffness. We also presented an overview of the proof

87



of convergence of the MPCG algorithm, along with a superior initial guess that

improves performance.

In Chapter 6, we presented a decomposition technique which opportunis-

tically breaks the cloth mesh into separate components that can be solved more

quickly and in parallel. Our method becomes attractive for large meshes, pro-

viding roughly a 20% reduction in the computational work required. Additional

performance improvements are easily realized via parallel implementations of the

technique.

Taken together, the above three methods roughly double to triple the speed

of existing cloth simulation methods.

In addition, we discussed modelling issues in Chapters 3 and 4, along with

the effect of numerical integration methods on the simulation. This included an

analysis of the projected damping formulation presented in Section 3.3.

7.1 Future Work

We have not exhausted the ideas presented in this thesis; a number of related re-

search avenues remain to be explored:

• The idea behind our AIMEX scheme, coupled with our decomposition tech-

nique, is surely applicable to other problem domains. In fact, it may prove

more useful in solving highly variable coefficient PDEs, or in application areas

where adaptive techniques are more prevalent.

• The AIMEX scheme employed in this thesis is only first-order accurate. As

a prototype, this is acceptable1. However, higher order methods must be

1in addition, first order techniques are still quite common in cloth simulation

88



considered; this requires the development of new stability criteria and their

subsequent testing in applications.

• The idea behind our constrained preconditioner can be extended beyond the

3× 3 block diagonal structure. Incomplete Cholesky and SSOR versions may

provide additional benefits.

• The parallel implementation of our decomposing solver is rudimentary. Exper-

imentation with additional processors and different architectures is warranted.

The force/Jacobian computations, along with collision detection and response,

can also be done easily in parallel; this should be done to truly realize the ben-

efits of the parallelism of our decomposition method.

• Our decomposition method relies on mechanisms which completely decouple

the mesh into independent components. More general versions of domain de-

composition methods (either in the form of a preconditioner to the linearized

problem, or as a multi-domain/interface reformulation) may provide more re-

liable performance improvements than our method. Also, heuristic decompo-

sition mechanisms — such as relative velocity measures between particles —

may also prove to be viable “cutting” lines; such methods would affect the

stability and accuracy of the solution, but perhaps not excessively.

89



Bibliography

[1] U. Ascher and E. Boxerman. On the modified conjugate gradient method in

cloth simulation. The Visual Computer, 2003. Accepted for publication.

[2] U. Ascher and L. Petzold. Computer Methods for Ordinary Differential Equa-

tions and Differential-Algebraic Equations. Society for Industrial & Applied

Mathematics, 1998.

[3] U. Ascher, S. Ruuth, and R. Spiteri. Implicit–explicit Runge–Kutta methods for

time-dependent partial differential equations. Applied Numerical Mathematics,

25(2–3):151–167, 1997.

[4] U. Ascher, S. Ruuth, and B. Wetton. Implicit-explicit methods for time-

dependent pde’s. SIAM J. Numer. Anal., (32):797–823, 1995.

[5] J. Ascough, J. Bez, H., and A. Bricis. A simple beam element large displace-

ment model for the finite element simulation of cloth drape. Textile Institute,

87(1):152–165, 1996.

[6] D. Baraff and A. Witkin. Large steps in cloth simulation. In SIGGraph, pages

43–54. ACM, 1998.

[7] D. Baraff, A. Witkin, and M. Kass. Untangling cloth. In ACM Trans. Graphics,

pages 862–870. ACM Press, 2003.

[8] K. Bhat, C. Twigg, J. Hodgins, P. Khosla, Z. Popovic, and S. Seitz. Estimating

cloth simulation parameters from video. In ACM SIGGRAPH/Eurographics

Symposium on Computer Animation, July 2003.

[9] D. Breen, D. House, and M. Wozny. Predicting the drape of woven cloth using

interacting particles. In Proceedings of the 21st annual conference on Computer

graphics and interactive techniques, pages 365–372. ACM Press, 1994.

[10] R. Bridson. Computational Aspects of Dynamic Surfaces. PhD thesis, Stanford

University, 2003.

90



[11] R. Bridson, R. Fedkiw, and J. Anderson. Robust treatment of collisions, contact

and friction for cloth animation. In Proceedings of the 29th annual conference

on Computer graphics and interactive techniques, pages 594–603. ACM Press,

2002.

[12] R. Bridson, S. Marino, and R. Fedkiw. Simulation of clothing with folds and

wrinkles. In ACM SIGGRAPH/Eurographics Symposium Computer Animation,

pages 28–36. ACM Press, 2003.

[13] M. Carignan, Y. Yang, N. Magnenat-Thalmann, and D. Thalmann. Dressing

animated synthetic actors with complex deformable clothes. Computer Graph-

ics, 26(2):99–104, 1992.

[14] K. Choi and H. Ko. Stable but responsive cloth. In Proceedings of the 29th

annual conference on Computer graphics and interactive techniques, pages 604–

611. ACM Press, 2002.

[15] K. Choi and H. Ko. Extending the immediate buckling model to triangular

meshes for simulating complex clothes. In Eurographics short presentations.

Eurographics Assoc, 2003.

[16] J. Collier, B. Collier, G. O’Toole, and S. Sargand. Drape prediction by means

of finite-element analysis. Journal for the Textile Institute, 82(1):96–107, 1991.

[17] M. Desbrun, P. Schröder, and A. Barr. Interactive animation of structured

deformable objects. In Graphics Interface, pages 1–8, 1999.

[18] R. DeVaul. Cloth dynamics simulation. Master’s thesis, Texas A&M University,

1997.

[19] B. Eberhardt, O. Etzmuss, and M. Hauth. Implicit-explicit schemes for fast

animation with particle systems. In Eurographics Computer Animation and

Simulation Workshop 2000, 2000.

[20] B. Eberhardt and A. Weber. Modelling the draping behaviour of woven cloth.

Maple Tech. Journal, 4(2):25–31, 1997.

[21] B. Eberhardt and A. Weber. A particle system approach to knitted textiles.

Computers & Graphics, 23(4):599–606, 1999.

[22] B. Eberhardt, A. Weber, and W. Strasser. A fast, flexible particle-system

model for cloth draping. IEEE Computer Graphics and Applications, 16(5):52–

59, September 1996.

91



[23] O. Etzmuss, B. Eberhardt, M. Hauth, and W. Straßer. Collision adaptive

particle systems. Proceedings Pacific Graphics 2000, 2000.

[24] O. Etzmuß, J. Groß, and W. Straßer. Deriving a Particle System from Contin-

uum Mechanics for the Animation of Deformable Objects. IEEE Transactions

on Visualization and Computer Graphics, 2002.

[25] C. Feynmann. Modeling the appearance of cloth. Master’s thesis, Massachusetts

Institute of Technology, 1986.

[26] A. George and J. Liu. Computer Solution of Large Sparse Positive Definite

Systems. Prentice Hall, 1981.

[27] S. Gibson and B. Mirtich. A survey of deformable modeling in computer graph-

ics. Technical report, 1997.

[28] S. Hadap, E. Bangerter, P. Volino, and M. Magnenat-Thalmann. Animating

wrinkles on clothes. pages 175–182. IEEE Computer Society, 1999.

[29] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration,

Structure-Preserving Algorithms for Ordinary Differential Equations. Springer,

2002.

[30] M. Hauth, O. Etzmuss, and W. Straßer. Analysis of numerical methods for the

simulation of deformable models. The Visual Computer, 2002. Accepted for

publication.

[31] M. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear

systems. J. Res. Natl. Bur. Stand., pages 409–436, 1952.

[32] D. House and D. Breen. Cloth modeling and animation. A. K. Peters, Ltd.,

2000.

[33] D. House, R. DeVaul, and D. Breen. Towards simulating cloth dynamics using

interacting particles. International Journal of Clothing Science and Technology,

pages 75–94, 1996.

[34] D. Hutchinson, M. Preston, and T. Hewitt. Adaptive refinement for

mass/spring simulations. In Proceedings of the Eurographics workshop on Com-

puter animation and simulation ’96, pages 31–45. Springer-Verlag New York,

Inc., 1996.

[35] Y. Kang, J. Choi, H. Cho, D. Lee, and C. Park. Real-time animation technique

for flexible and thin objects. In WSCG 2000, pages 322–329, 2000.

92



[36] M. Kass. An introduction to physically based modeling, chapter: Introduc-

tion to continuum dynamics for computer graphics. In SIGGRAPH 95 Course

Notes, 1995.

[37] S. Kawabata. The standardization and analysis of hand evaluation. The Textile

Machinery Society of Japan, 1980.

[38] B. Lafleur, N. Magnenat-Thalmann, and D. Thalmann. Cloth animation with

self-collision detection. In Proceedings of Conference on Modeling in Computer

Graphics. Springer, 1991.

[39] R. LeVeque. Finite volume methods for hyperbolic problems. Cambridge Texts

in applied mathematics. Cambridge University Press, 2002.

[40] J. Louchet, X. Provot, and D. Crochemore. Evolutionary identification of cloth

animation models. In Computer Animation and Simulation, pages 44–54. Eu-

rographics, 1995.

[41] J. Mezger, S. Kimmerle, and O. Etzmuß. Hierarchical Techniques in Collision

Detection for Cloth Animation. Journal of WSCG, 11(2):322–329, 2003.

[42] H. Ng and R. Grimsdale. Computer graphics techniques for modeling cloth.

IEEE Computer Graphics and Applications, pages 28–41, 1996.

[43] J. O’Brien and J. Hodgins. Graphical modeling and animation of brittle frac-

ture. In Siggraph 1999, Computer Grpahics Proceedings, pages 137–146, Los

Angeles, 1999. Addison Wesley Longman.

[44] D. Parks and D. Forsyth. Improved integration for cloth simulation. In Proc.

Eurographics short papers. Eurographics Assoc, 2002.

[45] X. Provot. Deformation constraints in a mass-spring model to describe rigid

cloth behaviour. In Proc. Graphics Interface, pages 147–154, 1995.

[46] X. Provot. Collision and self-collision handling in cloth model dedicated to

design garments. In Graphics Interface, pages 177–189, 1997.

[47] A. Quarteroni and A. Valli. Domain Decomposition Methods for Partial Dif-

ferential Equations. Oxford Science Publications, 1999.

[48] J. Renton. Applied Elasticity. Ellis Horwood, Ltd., 1987.

[49] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial &

Applied Mathematics, 1996.

93



[50] J. Shewchuk. An introduction to the conjugate gradient method without the

agonizing pain. Technical report, School of Computer Science, Carnegie Mellon

University, Pittsburgh, 1994.

[51] J. Strikwerda. Finite Difference Schemes and Partial Differential Equations.

Wadsworth & Brooks/Cole, 1989.

[52] S. Tan, T. Wong, Y. Zhao, and W. Chen. A constrained finite element method

for modeling cloth deformation. The Visual Computer, (15):90–99, 1999.

[53] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable

models. In Proceedings of the 14th annual conference on Computer graphics

and interactive techniques, pages 205–214. ACM Press, 1987.

[54] D. Terzopoulos and A. Witkin. Deformable models. IEEE Computer Graphics

and Applications, 8(6):41–51, November 1988.

[55] J. Villard and H. Borouchaki. Adaptive meshing for cloth animation. In 11th

International Meshing Roundtable, pages 243–252, Ithaca, New York, USA,

15–18 September 2002. Sandia National Laboratories.

[56] P. Volino, M. Courchesne, and N. Thalmann. Versatile and efficient techniques

for simulating cloth and other deformable objects. In Computer Graphics Pro-

ceedings, 1995.

[57] P. Volino and N. Magnenat-Thalmann. Collision and self-collision detection:

Efficient and robust solutions for highly deformable surfaces. In Dimitri Ter-

zopoulos and Daniel Thalmann, editors, Computer Animation and Simulation

’95, pages 55–65. Springer-Verlag, 1995.

[58] P. Volino and N. Magnenat-Thalmann. Implementing fast cloth simulation with

collision response. IEEE Computer Society, pages 257–268, 2000.

[59] P. Volino and N. Magnenat-Thalmann. Comparing efficiency of integration

methods for cloth animation. IEEE Computer Society, pages 265–274, 2001.

[60] P. Volino, N. Magnenat-Thalmann, S. Jianhua, and D. Thalmann. The evolu-

tion of a 3d system for simulating deformable clothes on virtual actors. IEEE

Computer Graphics and Applications, pages 42–50, 1996.

[61] V. Volkov and L. Li. Adaptive local refinement and simplification of cloth

meshes. In First International Conference on Information Technology & Ap-

plications (ICITA 2002), 2002.

94



[62] J. Weil. The synthesis of cloth objects. In Computer Graphics Proceedings,

Annual Conference Series, pages 49–53. ACM SIGGRAPH, 1986.

[63] D. Zhang and M. Yuen. Collision detection for clothed human animation.

Proceedings Pacific Graphics 2000, 2000.

[64] Y. Zhao, S. Tan, and T. Wong. An effective method for modelling flexible

surfaces of cloth objects. ASME, pages 351–348, 1994.

95


